
SOA/WS Applications using Cognitive Agents
working in CArtAgO Environments

Michele Piunti
DEIS, Università di Bologna

Via Venezia 52
Cesena (FC), Italy

michele.piunti@unibo.it

Alessandro Ricci
DEIS, Università di Bologna

Via Venezia 52
Cesena (FC), Italy
a.ricci@unibo.it

Andrea Santi
DEIS, Università di Bologna

Via Venezia 52
Cesena (FC), Italy

andrea.santi6@studio.unibo.it

ABSTRACT
In this paper we propose a programming model and the sup-
porting technologies for designing and programming Service-
Oriented Architectures (SOA) in the perspective of Multi-
Agent Systems and agent-oriented paradigms. In particu-
lar, the approach is meant to be useful for the design and
programming of complex service-oriented systems, by pro-
viding first-class design tools to implement challenging fea-
tures of nextcoming service applications. Indeed, besides
autonomy, loose-coupled interactions, openness, flexibility,
etc., the proposed design model promotes: (i) the use of
a strong notion of agency, thus agents that can be defined
along their mental attitudes to be fully autonomous systems,
with pro-active and goal oriented abilities with respect of
the achievement of their tasks; (ii) the definition artifact-
based work environments where agents are meant to work
and interact, thus enabling intelligent and cognitive agents
to co-use, expose and manage web service technologies in a
suitable functional fashion by the mean of special artifact-
based infrastructures. Besides describing the basic concepts
underlying the agent and artifact programming model for
web services, a developing platform called CArtAgO-WS is
introduced along with a describing example explored to show
the approach in practice.

1. INTRODUCTION
Agents and Multi-Agent Systems are more and more

recognised in the literature as a suitable paradigm for en-
gineering SOA/WS systems, since they provide a concep-
tual and engineering background that naturally fits many
complexities concerning SOA/WS at an high abstraction
level [14, 16, 11]. Actually this view is also promoted by
the official service-oriented model described in the official
W3C’s document about Web Services Architectures1, which
places agent-oriented concepts (such as autonomy, loosely
coupling, message-based interaction, and so on) among the
foundational notions used for defining web services. In-
deed, as in the agent-oriented paradigm, encapsulation is
the basic property for achieving service independency from
the context: services encapsulate their logic, whose size and
scope can vary, and can possibly encompass the logic pro-
vided by other services; in so doing, one or more services
can be suitably composed into a collective service. Be-
sides encapsulation, services are supposed to exhibit a cer-
tain degree of autonomy in that they must have control
over the logic they encapsulate [9]. To face complexity of

1http://www.w3.org/TR/ws-arch/

multiple interaction, changing contexts, coordination and
cooperation/composition, inter-service relationships should
minimise dependencies – in particular, control dependen-
cies – retaining only the awareness of the service description
(loose-coupling).

In the same research line that proposed the introduction
of agents and artifact models for the design of web services
[22] we here promote the agent-oriented programming ap-
proach for the implementation of complex service oriented
systems. In this view, we first describe CArtAgO-WS as a
general-purpose platform enabling the impementation of in-
tegrated SOA applications based on heterogeneous agents
operating in shared, artifact-based work environments. Be-
sides, we propose the adoption of a strong notion of agency
(cognitive agents, i.e. programmable based on specific men-
tal attitudes as belief and goals) in order to support pivotal
properties as pro-activeness towards goals and task achieve-
ment, context awareness, situatedness towards highly dy-
namic contexts, reactiveness to multiple events etc. Finally,
we propose the adoption of artifact-based infrastructure en-
abling agents to directly operate upon web services, includ-
ing relating mechanisms like messaging and WS-* protocols.
Like existing works in the agent literature, our approach
results in integrating existing agent technologies with Web
Services by providing a flexible agent-oriented programming
model (and a supporting platform) for designing and devel-
oping SOA/WS as open MAS, and possibly exploiting het-
erogeneous agent models/languages interacting in the same
artifact-based work environment. Differently form related
approaches, however, the novelty of this work is in enabling
the adoption of cognitive agents, i.e. agents that can be
conceived and programmed along mental states mimicking
an “intelligent” behavior. Whereas properties like loose cou-
pling between several resources, comformity to WS-* tech-
nologies etc. must be guaranteed in every SOA applica-
tion, cognitive agents – along with artifact-based support
infrastructures – are thus intruduced as a modeling tool, in
order to organise the system and ease the management of
complex dynamics as the ones elicited by information rich
environments, multiple asynchronous interactions, heteroge-
neous sources of events, etc.

The remainder of the paper is organised as follows: first,
Section 2 presents background issues and related works,
then the underlying agents and artifact programming model
for the design of web services is described in Section 3.
The CArtAgO-WS platform is presented in Section 4 and,
to give a concrete taste of the approach, Section 5 shows
a case study, discussing the implementation of a complex



SOA application based on agents working in artifact-based
workspaces. Finally, in Section 6 we conclude the paper,
briefly discussing final remarks and future works.

2. BACKGROUND
While Web services and SOA appear a promising solu-

tion for building interoperable, heterogeneous, and dynamic
distributed systems, the definition of proper programming
models is actually a main issue in research [8, 1, 9]. Where
actually the mainstream proposals are either object-oriented
or component-oriented, besides XML based interaction pro-
tocols, SOA does not provide a unifying programming model
or methodology to support the core system design and devel-
opment – which, therefore, still appears a challenging issue.
Mainstream approaches are straightforward for building ap-
plications where services can be simply mapped onto classes,
thus promoting the development of service applications – in-
cluding both the server side and the client side – essentially
as (distributed) object-based systems, where the interac-
tions among objects are essentially based on remote proce-
dure call mechanisms (RPC). For instance, Windows Com-
munication Foundation (previously called Indigo) [29] and
JAX-WS Specification2 provide frameworks mapping Web
Services and SOA programming concepts onto the OO pro-
gramming model. Other examples are Service Component
Architecture (SCA) [8], promoted by independent software
vendors such as IBM, SAP, IONA, Oracle, BEA, TIBCO to
cite some, and the Java Business Integration (JBI)3, pro-
moted by the Java Community. Approaches as the above-
mentioned cannot be considered adequate when complex
SOA systems are of concerns [8, 16], as pivotal properties like
autonomy, loose coupling, asynchronous interaction, concur-
rency, dynamic composability cannot be easily provided by
the basic OO modeling [9].

To overcome this gap we guess that last research on
agent-oriented architectures and related technologies could
be fruitfully exploited to define a general-purpose program-
ming model to support the design and the development of
Web Services and SOA systems, in particular when complex
applications are of concern. So far, several frameworks have
been presented in the agent area for the design of SOA. Actu-
ally they mainly focus on the integration of agent platforms
– in particular, FIPA-based platforms, such as JADE – with
Web Services technologies [12, 17, 28, 20, 11, 31]: their de-
sign objective is mainly to find a common specification to de-
scribe how to seamlessly interconnect FIPA-compliant agent
systems with W3C-compliant Web Services. The proposed
solution usually adopts some kind of centralized gateway
agent, working as a mediator for agents who aim to interact
with Web Services on the one side (agents as service con-
sumers) and for Web Service requests to be served by agents
on the other side (agents as service provider). In JADE, for
instance, a Web-Service Integration Gateway (WSIG) sup-
ports registration and discovery of Web Services by agents,
registration and discovery of JADE agents and agent services
by Web Services clients, automatic and cross-translation of
UDDI directory entries into DF directory entries and vicev-
ersa, invocation of Web Services by JADE agents, and invo-
cation of JADE agents by Web Services [12].

2http://jcp.org/en/jsr/detail?id=224
3http://jcp.org/aboutJava/communityprocess/final/
jsr208/index.html

Differently to approaches proposing a unique gateway in
order to address the interoperability between agents and
Web Services, our approach is based on a dynamic cre-
ation and control of artifact-based facilities aimed at sup-
porting agent activities at an infrastructural-level. As ex-
plained in the next sections, artifacts are special computa-
tional entities providing the access point to Web Services,
they can be created and configured on the need and are
exploitable in a functional / goal oriented fashion in order
to build and consume complex SOA applications. Besides
enabling interoperability between agents platforms and web
services, we here mean to investigate a complementary ap-
proach by promoting the use of a strong notion of agency
as well as distributed artifact-based facilities instrumenting
agents work environment. In this view, our work is related
also to existing approaches in literature investigating the
use of goal-oriented/BDI agent technologies in the context
of Web Services (see among others [6, 7, 5, 10, 30]). Never-
theless, more than in addressing specific issues like service
orchestration, discovery and coordination, we here aim at
providing a programming model general enough to enable
agents to intelligently exploit web services. In particular we
here focus on the intelligent interaction between agents and
artifact-based infrastructures. This is also the main per-
spective under which the novelty of this approach should be
appreciated with respect to existing industrial frameworks
implementing SCA, including those integrating established
research technologies like tuple spaces (such as in the case
of GigaSpace4). In so doing, we aim at exploiting some the
foundational features of the agent paradigm [15] to seam-
lessly tackle with a single computational model all those
aspects that are put forth by actual SOA models. In this
view we here promote the capability to integrate both a
task-oriented/process-oriented behaviour – such in the case
of agent based workflows [2] or goal oriented business pro-
cesses [27] – and a reactive (even-driven) behaviour, such
in the case of Event-Driven Architectures (EDA), which are
meant to be a main aspect of SOA 2.05.

3. AN AGENT-ORIENTED PROGRAM-
MING MODEL FOR WEB SERVICES

The agent-oriented programming model for implementing
Web Services relies on adopt A&A (Agents and Artifacts)
that was introduced in the context of agent-oriented soft-
ware engineering [18] as the reference meta-model. A&A
takes inspiration in particular from human cooperative envi-
ronments as they are modeled in Activity Theory and other
approaches in cognitive science. In this view, a service –
or an application using services, that can a be service it
self – is organized in terms of a set of autonomous entities,
the agents, that work together inside shared computational
working environments. Agents are pro-active entities, i.e.
they are designed and programmed so as to achieve some
kind of goal or do some kind of task autonomously, encap-
sulating the logic and control of their activities. To achieve
their design objectives agents are assumed to perceive and
act upon the computational environments where they work,
besides directly communicating in a message passing fash-
ion by means of some agent communication language (ACL).

4http://www.gigaspaces.com
5http://www.infoworld.com/t/architecture/
make-way-soa-20-420



Besides being pro-active, agents are also reactive, i.e. they
are meant continuously perceive events from the environ-
ment and react accordingly in a situated way.

The computational environments – possibly distributed –
are modeled in terms of workspaces, representing virtual lo-
cations containing sets of first-class entities called artifacts.
In A&A terms, artifacts represent external resources and
tools that agents can share and use to fulfill their work,
Moreover, they are function-oriented entities, i.e. they are
designed to encapsulate functionalities that agent can ex-
ploit to achieve their (individual and collective) objectives.

The interaction model defining agent-artifact interaction
is based on the notion of use and observation, mimicking hu-
man interactions with artifacts in their human (cooperative)
environments. Each artifact has a usage interface listing a
set of controls that agents can use to trigger and execute ar-
tifact operations. Operation execution – which occur asyn-
chronously to agent behavior – can lead to the generation
of observable events that the agent using the artifact, and
other agents possibly observing it, can perceive.

Besides events, each artifact can expose an observable
state, in terms of one or multiple observable properties
whose value can be dynamically perceived by agents, with-
out necessarily executing operations. By focussing an arti-
fact, agents can perceive artifact observable state and events
without directly using it – i.e. without triggering operation
processes6.

So, from a design point of view agents and artifacts are
the basic blocks to organize service-oriented systems: agents
are meant to encapsulate the logic and control of tasks, ac-
tivities and processes – both in the case of client applications
and service applications – while artifacts are useful devices
exploitable by agents to work together and to interact with
external systems.

Compared to object-based and component-based pro-
gramming model, here we have, on the one hand, first-class
computational entities to encapsulate (and hide) threads of
controls (agents), providing a direct support for building
concurrent programs – exploiting parallel and distributed
hardware – but without dealing with threads and low-level
related mechanisms. Artifacts, on the other hand, make it
possible to realize coordination mechanisms and shared re-
sources for agents without the need to face low-level issues
like synchronization mechanisms.

Besides these technical aspects, the most important value
is from a methodological viewpoint, having in the program-
ming model first-class abstractions that naturally capture
high-level concepts such as goals, tasks, actions that typi-
cally appear at the business level, as well as in the mod-
eling and design of complex services. By considering ad-
vanced services in particular, conceptually and pragmati-
cally agents reactivity and proactivity can be important in-
gredients to concretely program either event-driven systems,
as promoted by SOA extensions to integrate Event-Driven
Architectures, either goal-driven services – which accounts
for advanced aspects such as goal-driven service composition
and orchestration [30], goal-oriented business process man-
agements [6], and so on. Artifacts are ideal to implement
those business resources that are involved in service design,
including also tools (from the agent viewpoint) embedding

6A detailed description of agents and artifacts programming
model is outside the scope of this paper. The interested
readers can find more technical details in [26, 24].

the machinery related to legacy/standard technologies, such
as Web Services protocol stack management. Notice that,
differently from aproaches proposing a static, gateway based,
solution, in the proposed model the set of artifacts in a
workspace is dynamic: agents have proper actions to dynam-
ically create (and dispose) artifacts as instances of artifact
template, analogously to objects in object-based systems.

Finally, a main point of Web Services and SOA pro-
gramming model concerns composition, in this case related
to how a single service consumer/provider application can
be assembled (and extended) by (possibly heterogeneous)
parts. Component-based approaches provide a straightfor-
ward support – compared to flat OO models, in particular –
by introducing assemblies and proper wiring models. In the
programming model proposed in this paper, composition is
totally dynamic, realized both by agents that can dynami-
cally join and quit workspaces, and by the runtime creation
(by agents) of artifacts, that can be then discovered (and
disposed) at runtime by other agents on the need.

4. THE CArtAgO-WS PLATFORM
CArtAgO-WS (Common ARtifact infrastructure for AGent

Open environment and Web Services) is a platform provid-
ing a concrete programming platform and technology imple-
menting the abstract model described in the previous sec-
tion. Actually the platform integrates different kind of agent
technologies (see Fig. 1).

A first technology is CArtAgO [26], as the platform / in-
frastructure used to develop and execute the computational
worlds where agents live. CArtAgO provides both a concrete
computational/programming model for developing artifacts
and a runtime environment for their execution. Currently
CArtAgO is fully developed in Java and also the basic API
to program artifacts is Java-based7.

Then, multiple technologies (and computational models
and architectures) can be exploited to program and execute
agents in CArtAgO [23, 19]. Among the other, Jason technol-
ogy [3] – which will be used in examples in Section 5 – based
on the AgentSpeak agent programming language, which pro-
vides a programming model based on the BDI (Belief - De-
sire - Intention) architecture to program so called intelligent
or cognitive agents. Other integrated technologies include
simpA [25], a framework to develop activity-oriented agents
on top of the Java platform, and Jadex [21], another platform
based on Java to develop BDI, goal-directed agents.

CArtAgO-WS makes it possible to exploit CArtAgO and
agent technologies such as Jason, simpA and Jadex to de-
velop service-oriented applications based on Web Services.
Basically CArtAgO-WS extends CArtAgO by providing a pre-
defined workspace called web-services: this workspace is in-
strumented with a basic set of artifacts that enable, on the
one side, the interaction of agents with existing Web Services
and, on the other side, the construction and deployment of
new Web Services controled by agents. This basic support is
described in the Subsection 4.1. Besides this basic enabling
level, CArtAgO-WS includes an open set of artifacts imple-
menting WS-* functionalities: this support is described in
Subsection 4.2.

4.1 Basic Support
7CArtAgO implementation is open-source and available at
http://cartago.sourceforge.net



WSPanel

WSDL

SOAP / WS-I

WS consumers

AXIS2+Tomcat CArtAgO

Java Platform

Jason Intepreter

JVM

C4Jason
bridge

Other 
Agent

Platforms
...

web-services

wsp-1

SOAP / WS-I

WSInterface

WSDL

Web Service

SOAP / WS-I

AXIS2+Tomcat CArtAgO

Java Platform

Jason Intepreter

JVM

WSInterface
WSDL

Web Service
web-services

C4Jason
bridge

Other 
Agent

Platforms
...

wsp-0

Agents

Artifacts

use
perceptions

LEGEND

CArtAgO-WS WS-* Layer
CArtAgO-WS WS-* Layer

Figure 1: CArtAgO-WS platform overview. On the left side, a CArtAgO-WS node running a Web Service,
composed by two workspaces—web-services and wsp-1. In web-services workspace, an instance of WSPanel

artifact is shared and used by two agents to process WS requests and send replies. On the right side, a
CArtAgO-WS node running an application using existing Web Services. Also in this case we two workspaces
are shown—web-services and wsp-0. In web-services workspace two instances of WSInterface artifact are
exploited by the same agent to interact (concurrently) with two distinct Web Services.

In CArtAgO-WS a SOA application is deployed in a web-
services workspace instrumented by special artifact-based in-
frastructures that agents can instantiate and use to provide
or consume Web Services with no disruption to the applica-
tions themselves. In particular, CArtAgO-WS provides two
basic types of artifacts to enact an Agent-Web Service inter-
action, namely WSInterface and WSPanel artifacts (as showed
in Fig. 1). They work either as wrappers for exploiting
and integrating low-level WS enabling technologies, either
as means to reify in the agents’ world resources and tools
dwelling Web Services.

To work with a given Web service, an agent instantiates a
WSInterface artifact specifying its WSDL document – which
describes the service to interact with – and optionally other
details such as the specific name/port type to be used (if
the WSDL includes multiple port types and services), and a
local name representing the endpoint to which the artifact
is bound to receive messages (e.g. replies). Once created,
WSInterface provides basic functionalities to interact with
the specified Web Service, in particular to send messages for
executing operations and to get the replies sent back by the
service, according to the message exchange patterns defined
in the WSDL and to the quality of service specified by the
service policies (in particular, security and reliability). To
interact with multiple Web Services, multiple WSInterface

artifacts must be created, one for each service: agents can
then use such artifacts to interact with the services concur-
rently. Different agents can also use the same WSInterface

artifact to interact with the same service. WSInterface usage
interface includes general purpose operation controls aimed
at enabling the interaction with any possible Web Service,
according to the wide set of interaction protocols. In par-
ticular, it includes operations to send a message to the ser-
vice in the context of an operation (sendWSMsg) and to get
the reply to messages previously sent during an operation
(getWSReply). Besides, it includes higher-level operations to
directly support basic MEPs, such as the request-response

(in-out) MEP (requestOp) which sends a request message
and generates an event when the response message arrives.
An additional operation is provided to configure the SOAP
based interaction and for the support of basic WS-* stan-
dards (i.e. WS-Addressing).

Besides interacting with existing services, CArtAgO-WS
enable agents to the creation and the management of new
Web Services. In particular, the WSPanel artifact is pro-
vided to allow agents to create, set up and control a Web
Service. Analogously to the previous case, WSPanel can be
instantiated specifying a WSDL document related to the
Web Service to be produced. Once created, WSPanel pro-
vides basic functionalities to manage service requests, in-
cluding receiving and sending messages according to the
specific MEP as described in the WSDL, and basic con-
trols to configure security and reliability policies. Also in
the case of WSPanel, the usage interface includes a set of
general purpose operation controls enabling the interaction
according to the wide spectrum of possible WS messaging
patterns. Operations are available to retrieve or be noti-
fied about requests/messages arrived to the Web Service
possibly specifying filters to select messages on the basis
of their content/meta-data (getWSMsg and subscribeWSMsgs),
and to send replies accordingly (sendWSReply). It is worth
remarking that agents can dynamically create, quit and re-
create both WSPanel and WSInterface once they have joined
a web-services workspace hosted in a CArtAgO-WS node:
this enables the capability of dynamically deploy and re-
configure Web Services not by human intervention but by
agents activities, thus promoting an automated management
of web-services. Accordingly, it is possible to instantiate
multiple Web Services at the same time, i.e. by creating
multiple WSPanel artifacts, one for each service. Also in this
case, multiple agents can use the same WSPanel artifact to
process the service requests and/or to cooperatively manage
the message exchange pattern related to individual requests.



4.2 WS-* Layer Support
CArtAgO-WS has been conceived to be modularly ex-

tended to support the full spectrum of Web Services stack
protocol, implementing in particular those specifications
that appear in the WSIT (Web Services Interoperability
Technologies) set 8. In the following, we refer to such module
of CArtAgO-WS as WS-* layer.

Generally speaking, the objective of the WS-* layer is to
provide a straightforward way – for developers and agents,
finally – to get access, and manage all the processing related
to WS specifications. Part of the functionalities are provided
directly by WSInterface and WSPanel artifacts, and part are
provided by additional kinds of artifacts, namely Wallet and
WSRequestMediator

First, WSInterface and WSPanel artifacts provide specific
operations to configure them so to support specific policies
related to aspects such as security (WS-Security), reliability
(WS-ReliableMessaging), coordination (WS-Coordination).
In that way, interface and panel artifacts automatically en-
rich/process/validate SOAP messages with all the necessary
information to adhere to the WS specification.

In some cases, however, the information needed to con-
figure WSInterface and WSPanel artifacts could be quite ar-
ticulated and require protocols for their construction. It
is the case, for instance, of WS-Coordination (WS-C). To
this end, WSRequestMediator (RM) artifacts are provided, to
be used by agents to retrieve (or create) dynamic informa-
tion required by complex specification such as WS-C. For
instance, suppose that an agent aims to create a new WS-
AtomicTransaction (WS-AT) interaction. To this end, the
agent can use a RM to (create and) retrieve a coordination
context, properly configured following WS-Coordination and
WS-AT standards. Actually, to achieve these functionalities,
the WS-* layer contains also proper worker agents – work-
ing behind RM artifacts, not visible to application agents
– that are responsible of engaging communication protocols
eventually needed to create context information and finally
fulfill the agent requests.

Finally, the Wallet artifact is introduced as “personal ar-
tifact” of agents interacting with Web Services, so to ease
the management of profile/context information eventually
needed by WS specification and retrieved or created by
means of RM artifacts. Such information can range from
security tokens as required by WS-Security to dynamic co-
ordination contexts used in WS-C protocols. In a typical
scenario, a WS consumer agent first gets profile information
from the wallet and then uses it to configure the WSInterface

adopted to interact with the Web Service.

5. A CASE STUDY: BOOK AN HOLIDAY SCE-
NARIO

After providing an abstract account of the main elements
of CArtAgO-WS, in this section we show them in practice
by considering a case study involving some of the motivat-
ing elements at the basis of our approach. The described
scenario is inspired by a typical example used in SOA/WS
contexts: a client agent wants to book a holiday by exploit-
ing a series of web services providing the required resources
as hotel reservation, transport facilities, payment and so on.
As an additional element of the scenario, we imagine for

8https://wsit.dev.java.net/

the client the possibility to be further notified whether a
selected range of date has become available for additional
reservations. This allows clients to express an interest for a
given date, and thus to re-try the booking activity whether
the provider signals a last minute availability (i.e. due to
some reservation cancelation performed by other clients).
On these basis, the involved services need to shape their
activities based on situated conditions:

• A given transaction can have success, or not, given the
resources which are actually available.

• The same transaction can be retried, based on changed
contexts for which, at the moment of the first attempt,
the provider could not finalize the task.

To achieve such a flexibility, service behavior can be straight-
forwardly expressed in terms of goals (i.e. to book an hol-
iday, to provide reservations, etc.) and situated plans to
achieve them, involving the interaction with heterogeneous
resources (such as internal resources as databases, coordina-
tion and transaction facilities, other web services). Accord-
ingly, we will design and program the service with two basic
cognitive (goal-oriented) agents – programmed in Jason –
and a basic set of artifacts, representing the heterogeneous
resources needed by agents to achieve their goals.

To ease the understanding of the approach, we first briefly
introduce some main concepts of Jason agent programming
model in Subsection 5.1; then, in Subsection 5.2, we describe
the design and implementation of the booking application,
on top of CArtAgO-WS.

5.1 Jason Agent Programming Model
An agent program in Jason is defined by an initial set

of beliefs, representing agent’s initial knowledge about the
world, a set of goals, and a set of plans that the agent can
dynamically instantiate and execute to achieve such goals.
Agent plans are described by rules of the type Event :

Context <- Body (the syntax is Prolog like), where Event
represents the specific event triggering the plan – examples
are the addition of a new belief (+b), a goal (+!g), the per-
ception of an observable event generated by an artifact (+ev
[source(?Art)]), the perception of an update of an arti-
fact observable property, (+p [artifact(?Art)]). The plan
context is a logic formula on the belief base – a belief for-
mula – indicating the conditions under which the plan can
be executed. The plan body includes basic actions to create
subgoals to be achieved (!g), to update agent inner state
– such as adding a new belief +b – and to work with arti-
facts (provided by the integration with CArtAgO). Actions
in the latter case include use, to trigger the execution of
an artifact operation, makeArtifact, to create a new arti-
fact, lookupArtifact, to get an artifact unique identifier,
joinWorkspace, to join a workspace, and focus, to start
observing a specific artifact.

All the reasoning processes driving the execution of a plan
reacting to events are managed at a system level, by the
agent engine. From a programming perspective this means
that an agent developer can define an agent’s behavior by
simply declaring the goal oriented activities to be performed,
in terms of plans, and the situated conditions to be evaluated
in order to execute the plan. A more detailed descriptions
of Jason agent programming language is outside the scope
of this paper: interested readers can find more details in [4].



ProxyPayment

Hotel Basic
Agent

HOTEL MANAGER SERVICE
(HM)

WS/SOAP 
messages

Hotel Notifier
Agent

BookingManager 
WSDL

subscribeWSMsgs
sendWSReply

getWSMsgWithFilter

WSPanel

Subscribers 
Map

addSubscriber
removeSubscriber
getSubscribers

Booking Requestor
Agent (BRA)

ProxyHotel

WSInterface

BookingManager 
WSDL

bookingOperation
subscribeOperation
unscribeOperation

ProxyTransport

bookingOperation

WSInterface

TransportManager 
WSDL

WS-* LAYER

USE
PERCEPTION

SENSE

WS-COORD
Worker Agent

WS/SOAP
MESSAGES

payOperation

WSInterface

PaymentManager 
WSDL

ProxyCoordinator

WSInterface

WSAtomicTransaction 
WSDL

commitOperation
rollbackOperation

addNewRequest

getRequestResult

WSCoordRequestMediator

getNextRequest
addInfo
resumeInfo

Wallet

HotelBooking
Registry

bookingCheck

finalizeBooking
unlockDates

bookingCancellation

WS-COORD
Worker Agent

WS-* LAYER

addInfo
resumeInfo

Wallet

addNewRequest

getRequestResult

WSCoordRequestMediator

getNextRequest

BOOKING SERVICE
(BS)

Figure 2: Structural architecture showing the services involved in the Book an Holiday scenario. On the
left side, the Booking Service is controlled by a Booking Requestor Agent managing WSInterface artifacts
wrapping services as Transport Manager, Payment Manager, Hotel Manager and WSAtomicTransaction. On
the right side, the Hotel Manager Service uses two agents (Hotel Notifier and Hotel Basic) and two artifacts
(Subscribers Map and HotelBooking Registry) in order to provide the booking service and the notification
events exploitable by the users. The two services make use of an additional layer (on the bottom in figure)
in which agents and artifacts coordinate the transactions according to WS-* mechanisms.

5.2 System Description
As showed in Fig. 2, the application is centered on two

main services: Booking Service and Hotel Manager.
The Hotel Manager Service (HM) manages the booking

tasks and also provides notification functionalities to sub-
scribers. HM has been designed using two specialized agents,
the Hotel Basic Agent and Hotel Notifier Agent, sharing and
exploiting an instance of WSPanel to expose the service (see
Fig. 2 right). The former agent manages the requests re-
lated to bookings and cancelations, exploiting – to this end
– the functionalities provided by an HotelBookingRegistry

artifact. The second agent manages the HM’s notifica-
tion functionalities: it uses a SubscribersMap artifact to
keep track of the subscriptions requested and monitors the
HotelBookingRegistry so as to notify interested subscribers
as soon as changes regarding date availabilities are observed.

On the user side, the Booking Service (BS) realizes the
task related to a client agent who wants to organize an holi-
day. The service is built around the pivotal role played by a
Booking Requestor Agent (BRA), whose final goal is to plan
the required reservation related to an holiday for a given
period.

To achieve this goal, BRA is assumed to compose sev-
eral resources, in this case related to the use of artifacts
embedding external web services (see Fig. 2 left): In this
case, the Hotel Manager service (HM) is used to (i) check
the availability of hotel rooms for the specified period, (ii)
subscribe for possible notifications (in case of missed avail-
ability) and (iii) finalize the reservation. Besides HM, the
Booking Service uses additional services to accomplish its

goal. In particular, a TransportManager service (TM) is
needed to manage the booking for the transports used for
arriving to (and leaving from) the specified destination. A
PaymentManager service (PM) is used to manage bank ac-
counts and to finalize the payment.

To execute transactions, the Booking Requestor Agent also
exploits the support provided by the WS-* layer (a wallet
and a requestor mediator artifacts). The task is managed
through an atomic transaction (WS-AT) between a booking
requestor and a set of WS realizing the booking application.
The WS-AT is coordinated through a Coordinator Service

embedded into the WS-* layer, but an external one can be
used as well.

Tab. 1 shows a Jason cutout of BRA agent. For simplic-
ity, we here report only the core part of the agents9. Agent’s
activities not reported here concerns further interaction be-
tween the BS and additional services. Among the others,
the plan retrieveDate is executed to retrieve the informa-
tion provided – for instance – by a human user, and to store
it in form of beliefs supporting agent’s behavior (goal sup-
porting beliefs).

An example of possible dynamics follows. BRA requests
to the WS-* layer the creation of a new WS-AT for man-
aging the booking. Then BR contacts the described WS
for accomplishing the booking operations. We may imag-
ine that the hotel has already reached the number of max-
imum reservations – as this information has been stored in

9The complete source code as well as the WSDLs of the em-
ployed services are available at: https://cartagows.svn.
sourceforge.net/.



+!doRequest

: a_id(wsproxycoord, WSProxyCoord)

& a_id(wallet,Wid) & a_id(wscoord_request_mediator, RequestMediator)

<- // use RequestMediator to add a new request and to

// get the result Context to be put in the wallet

cartago.use(Wid, addInfo(Context));

!start_booking(Res).

+!start_booking("request_succeeded")

: a_id(wallet, WA)

<- !setupTools;

!retrieveDate;

!book_hotel.

+!setupTools

<- // look up for artifacts to be used and store their

// identifiers as beliefs of the type a_id(name,id);

+!retrieveDate

<- // query the user to retrieve the dates of interest and

// store them in the beliefbase as a fact of the type date(Dates).

...

+!buildWSInterface(Name, WsdlURI, Op, Port, WSInt)

: a_id(wallet,Wid)

<- cartago.createWSInterface(Name, Wsdl, Op, Port, WSInt);

cartago.use(Wid, resumeInfo, sensor0);

cartago.sense(sensor0, info(Context), 1000);

cartago.use(WSInt, configure(Context)).

+!book_hotel

: date(Date) & a_id(wsproxyhotel, WSProxyHotel)

<- !createBookingMessage(hotel, Date, MsgBookHotel)

cartago.doRequestResponse(WsProxyHotel,

bookingOperation(MsgBookHotel), 10000, ResponseHotel);

!inspect_hotel_response(ResponseHotel, Resp);

!book_accessories(Resp).

+!book_accessories("available")

: a_id(wsproxyhotel, WSPT) & a_id(wsproxypayment, WSPP)

& date(Date) & hprice(HotelP) & tPrice(TransportP)

<- !createBookingMessage(transport, Date, MsgTr);

cartago.doRequestResponse(WSPT, bookingOperation(MsgTr), 10000, RespT);

!createPayMessage("1", (HotelP+TransportP), MsgOp)

cartago.doRequestResponse(WSPP, payOperation(MsgOp), 10000, RespP);

!inspect_acc_responses(RespT,RespP, Result);

!finalize(Result).

+!book_accessories("not_available")

: a_id(wsproxyhotel, WSPH) & dates(Dates)

<- !createSubscribeMessage(subscription, Dates, MsgSubscription);

cartago.focus(WSPH);

cartago.use(WSPH, subscribeOperation(MsgSubscription) ).

+dateNotMoreFull(DateId) [source(WSPH)]

: a_id(wsproxyhotel, WSPH)

<- cartago.stopFocusing(WSPH);

!book_hotel;

Table 1: Jason cutout of the Booking Requestor
Agent.

the HotelBookingRegistry artifact – for some of the dates
in the requested period. In that case, the HM replies to
BRA with a message notifying the inability to finalize the
reservation. As BRA retrieves this information from the
WSInterface artifact related to the HM, and it is forced to
rollback the WS-AT. In the hope that some client will can-
cel a reservation for the desired date, BRA can now use
the HM WSInterface for subscribing itself for the notifica-
tion of possibly further availability. Then, by focusing the
HM WSInterface, BR waits for a possible HM’s notification.
BR’s subscription is now handled within the HM service by
the Hotel Notifier Agent, which stores the request in the
SubscribersMap artifact (see Fig. 2 right and Tab. 2 for the
Hotel Notifier implementation). If some other agent inter-
acting with HM cancels its reservation for the subscribed
date, such a change is signalled, within the HM side, to
the HotelBookingRegistry artifact which stores the data re-
lated to the various reservations. In this case, the Hotel
Notifier Agent is supposed to receive a signal from the reg-
istry (+data_status_changed(Date, DateStatus)). As soon as
it perceives the +data status changed event, it creates a new
subgoal to process such information, by retrieving the sub-
scribers matching the given date, and by sending back a
notification message to the booking service who subscribed

+!run_hotel_service_notifer_agent

<- !setupTools;

!doSubscription.

+!setupTools

<- // look up for artifacts to be used and store their

// identifiers as beliefs like a_id(name,id).

+!doSubscription

: a_id(wspanel, WSPanel) & filter(Filter)

<- cartago.newObj("alice.cartagowsapi.WSMsgBasicFilter",

["SubscribeOperation|UnscribeOperation"], Filter);

cartago.use(WSPanel,subscribeWSMsgsWithFilter(Filter)).

+percept(EvMsg) [source(MapId)]

: a_id(subscribersMap, MapId)

<- cartago.callObj(Ev, getOperationName, Type);

!process(EvMsg, Type).

+!process(EvMsg, "SubscribeOperation")

: a_id(subscribersMap, MapId)

<- !findDates(EvMsg, Dates);

cartago.use(MapId,addSubscriberForDates(Dates,EvMsg)).

+!process(EvMsg, "UnscribeOperation")

: a_id(subscribersMap, MapId)

<- !findDates(EvMsg, Dates);

cartago.use(MapId, removeSubscriberForDates(Dates,EvMsg)).

+data_status_changed(Date, DateStatus) [source(RegistryId)]

: a_id(registry,RegistryId) & a_id(subscribersMap, MapId)

<- cartago.use(MapId, getSubscribersForDate(Date),s0);

cartago.sense(s0,subscribers(Subscribers));

// create NotificationMsg

!notifySubscribers(Subscribers,NotificationMsg).

+!notifySubscribers([WSMsgInfo|T],NotificationMsg)

: a_id(wspanel, WSPanel)

<- cartago.use(WSPanel,sendWSReply(WSMsgInfo,NotificationMsg));

!notifySubscribers(T,NotificationMsg).

+!notifySubscribers([],NotificationMsg).

+!findDates(EvMsg, Dates)

<- // parses EvMsg to retrieve the period of interest

// and unifies it with Dates.

Table 2: Jason cutout of the Hotel Notifier Agent

(notifySubscribers plan).
Within the booking service, the message indicating a new

availability is translated by WSInterface artifact related to
the HM service. Furthermore, that artifact automatically
signals an event in form of percept to the internal BRA
agent. Also in this case, the event received by BRA is
an agent’s percept +dateNotMoreFull(DateId)). It contains
a date identifier by which the agent can match the event
and thus recognize it as a meaningful one with respect to
its goals. In so doing, the BRA can now re-execute a new
book hotel plan, by which the activities needed to achieve
the goal are replanned from scratch. Differently from what
happened in the first attempt, the BRA now succeeds to
book either the hotel and the transport service, since all the
required resources are actually available. Hence, it uses the
PM for the payment and it commits the transaction, finally
completing its task. Notice that the all mechanisms hold-
ing BRA to its idle state, during which it simply waits for
a notification, as well as the mechanisms related to its re-
awaken are here simply managed at a system level, both by
CArtAgO-WS and Jason: the developer only needs to specify
under which conditions the events coming from the artifacts
can be exploited to reactivate the agent practical reasoning.

6. CONCLUSION AND FUTURE WORKS
Existing works applying agents in the context of Web Ser-

vices are mainly devoted either to specific service issues –
such as dynamic composition of services [16] – or to de-
vise an integration between Web Services and existing agent
technologies [12]. In this paper we focused instead on the
programming model issue, i.e. devising a general-purpose
agent-oriented programming model for designing and pro-
gramming Web Services and WS-based SOA applications.



We guess that a major strength of the approach is the level of
abstraction introduced to develop services and applications
using services, as they can be conceived as open workspaces
where dynamic sets of possibly heterogeneous agents work
together by constructing, sharing and exploiting the proper
artifacts. As forthcoming SOA systems may require ser-
vices to intelligently handle multifaceted requirements, we
guess agent and artifact abstractions may assume a pivotal
role, i.e. in forging complex workflow of goal oriented activi-
ties, in handling complex course of events in a situated way,
in promoting coordination, adaptiveness, cooperation and
so forth through specialized artifacts supporting the WS-*
mechanisms. CArtAgO-WS platform makes it possible to put
in practice these concepts, allowing the use of different kind
of agent technologies for implementing agents working in-
side workspaces, in particular intelligent agent programming
platforms such as Jason. In this view, a primary objective
of future works will be the use of the platform to investigate
the synergy between goal-oriented and artifact-based tech-
nologies for the construction of complex SOA/WS systems,
with aspects concerning, for instance, goal-oriented orches-
tration [10, 30], goal-oriented business process management
[6] and autonomic SOA/WS [13].

7. REFERENCES
[1] S. Anand, S. Padmanabhuni, and J. Ganesh.

Perspectives on service oriented architectures. In 2005
IEEE International Conference on Service Computing,
volume 2. IEEE, 2005.

[2] M. Banzi, G. Caire, and D. Gotta. Wade: A software
platform to develop mission critical. applications
exploiting agents and workflows. In AAMAS Industry
Track, 2008.

[3] R. Bordini and J. Hübner. BDI agent programming in
AgentSpeak using Jason. In F. Toni and P. Torroni,
editors, CLIMA VI, volume 3900 of LNAI, pages
143–164. Springer, Mar. 2006.

[4] R. Bordini, J. Hübner, and M. Wooldridge.
Programming Multi-Agent Systems in AgentSpeak
Using Jason. John Wiley & Sons, Ltd, 2007.

[5] L. Bozzo, V. Mascardi, D. Ancona, and P. Busetta.
COOWS: Adaptive BDI agents meet service-oriented
computing (extended version). In European Workshop
on Multi-Agent Systems (EUMAS 2005), 2005.

[6] B. Burmeister, M. Arnold, F. Copaciu, and
G. Rimassa. BDI-agents for agile goal-oriented
business processes. In Proc. of 7th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS
2008), Industry and Application Track., 2008.

[7] G. Casella and V. Mascardi. Intelligent agents that
reason about web services: a logic programming
approach. In A. Polleres, S. Decker, G. Gupta, and
J. de Bruijn, editors, Proceedings of the ICLP’06
Workshop Workshop on Applications of Logic
Programming n the Semantic Web and Semantic Web
Services, ALPSWS2006, pages 55–70, 2006.

[8] F. Curbera, D. F. Ferguson, M. Nally, and M. L.
Stockton. Toward a programming model for
service-oriented computing. In B. Benatallah,
F. Casati, and P. Traverso, editors, Third
International Conference on Service-Oriented
Computing (ICSOC-05), volume 3826 of Lecture Notes

in Computer Science, pages 33–47. Springer, 2005.

[9] T. Erl. Service-Oriented Architecture: Concepts,
Technology, and Design. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2005.

[10] M. Georgeff. Service Orchestration: The Next Big
Thing. DM Review, 2006.

[11] D. Greenwood and M. Calisti. Engineering web
service-agent integration. In In Proceedings of the
IEEE International Conference on Systems, Man and
Cybernetics, pages 1918—1925, The Hague,
Netherlands, 2004. IEEE Computer Society.

[12] D. Greenwood, M. Lyell, A. Mallya, and H. Suguri.
The ieee fipa approach to integrating software agents
and web services. In AAMAS ’07: Proceedings of the
6th international joint conference on Autonomous
agents and multiagent systems, pages 1–7, New York,
NY, USA, 2007. ACM.

[13] S. A. Gurguis and A. Zeid. Towards autonomic web
services: achieving self-healing using web services.
SIGSOFT Softw. Eng. Notes, 30(4):1–5, 2005.

[14] M. N. Hunhs. A research agenda for agent-based
Service-Oriented Architectures. In M. Klusch,
M. Rovatsos, and T. Payne, editors, CIA 2006, volume
4149 of LNA, pages 8–22. Springer-Verlag Berlin
Heidelberg, 2006.

[15] N. R. Jennings. An agent-based approach for building
complex software systems. Commun. ACM,
44(4):35–41, 2001.

[16] M. N. Huhns, M. P. Singh, and M. e. a. Burstein.
Research directions for service-oriented multiagent
systems. IEEE Internet Computing, 9(6):69–70, Nov.
2005.

[17] X. T. Nguyen and R. Kowalczyk. WS2JADE:
Integrating web service with jade agents. In
Service-Oriented Computing: Agents, Semantics, and
Engineering, volume 4507 of LNCS, pages 147–159.
Springer Berlin / Heidelberg, 2007.

[18] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the
A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 17 (3),
Dec. 2008.

[19] M. Piunti, A. Ricci, L. Braubach, and A. Pokahr.
Goal-directed interactions in artifact-based mas:
Jadex agents playing in CArtAgOenvironments. In
International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT ’08), volume 2,
pages 207–213, Sydney, NSW, 2008.
IEEE/WIC/ACM.

[20] A. Poggi, M. Tomaiuolo, and P. Turci. An agent-based
service oriented architecture. In AI*IA Workshop
From Object to Agents (WOA-07), 2007.

[21] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex:
A BDI reasoning engine. In R. Bordini, M. Dastani,
J. Dix, and A. E. F. Seghrouchni, editors, Multi-Agent
Programming. Kluwer, 2005.

[22] A. Ricci and E. Denti. simpA-WS: A Simple
Agent-Oriented Programming Model & Technologyfor
Developing SOA & Web Services. In Proceedings of
AI*IA/TABOO Joint Workshop From objects to
Agents (WOA 2007), 2007.

[23] A. Ricci, M. Piunti, L. D. Acay, R. Bordini,
J. Hubner, and M. Dastani. Integrating artifact-based



environments with heterogeneous agent-programming
platforms. In Proceedings of 7th International
Conference on Agents and Multi Agents Systems
(AAMAS08), 2008.

[24] A. Ricci, M. Piunti, M. Viroli, and A. Omicini.
Multi-Agent Programming: Languages, Tools and
Applications. (Eds.) 2009, Springer. ISBN:
978-0-387-89298-6. Springer, 2009.

[25] A. Ricci and M. Viroli. simpA: An agent-oriented
approach for prototyping concurrent applications on
top of java. In V. Amaral, L. Veiga, L. Marcelino, and
H. C. Cunningham, editors, Proceedings of the 5th
International Conference, Principles and Practice of
Programming in Java (PPPJ 2007), pages 185–194,
Lisbon, Portugal, sep 2007.

[26] A. Ricci, M. Viroli, and A. Omicini. The A&A
programming model & technology for developing
agent environments in MAS. In M. Dastani,
A. El Fallah Seghrouchni, A. Ricci, and M. Winikoff,
editors, Post-proceedings of the 5th International
Workshop “Programming Multi-Agent Systems”
(PROMAS 2007), volume 4908 of LNAI, pages
91–109. Springer, 2007.

[27] G. Rimassa, M. E. Kernland, and R. Ghizzioli.
Ls/abpm - an agent-powered suite for goal-oriented
autonomic bpm. In AAMAS (Demos), 2008.

[28] A. A. Shafiq, H. F. Ahmad, and H. Suguri. AgentWeb
Gateway - a middleware for dynamic integration of
multi agent system and web services framework. In
IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprise, 2005.

[29] C. B. Steve Resnick, Richard Crane. Essential
Windows Communication Foundation (WCF): For
.NET Framework 3.5. Addison-Wesley, 2008.

[30] M. B. van Riemsdijk and M. Wirsing. Using goals for
flexible service orchestration - a first step. In
Service-Oriented Computing: Agents, Semantics, and
Engineering (SOCASE’07), volume 4504 of LNCS,
pages 31–48. Springer-Verlag, 2007.

[31] L. Z. Varga and A. Hajnal. Engineering web service
invocations from agent systems. In In Proceedings of
the 3rd International Central and Eastern European
Conference on Multi-Agent Systems, pages pages
626–635, Prague, Czech Republic, jun 2003.


