
Exploiting the easyABMS methodology in social and
economic domains

Alfredo Garro
Dipartimento di Elettronica,

Informatica e Sistemistica (D.E.I.S.)
Università della Calabria

Via P. Bucci 42 C
87036, Rende (CS), Italy

alfredo.garro@unical.it

Wilma Russo
Dipartimento di Elettronica,

Informatica e Sistemistica (D.E.I.S.)
Università della Calabria

Via P. Bucci 42 C
87036, Rende (CS), Italy

w.russo@unical.it

ABSTRACT
Agent-Based Modeling and Simulation (ABMS) represents a
powerful approach for analyzing and modeling modern social and
economic systems as they can be naturally conceived as composed
of autonomous, goal-driven and interacting entities (agents)
organized into societies. However, although several tools for
ABMS are available, there are few methodologies and related
processes which are able to cover all the phases from the analysis
of the system under consideration to its modeling and simulation
results analysis. Moreover, the absence of visual modeling tools
and techniques for ABMS often constitutes an entry barrier for
whoever lacks advanced programming skills. This paper presents
and exemplifies through a case study an integrated and iterative
methodology (easyABMS) specifically conceived for agent-based
modeling and simulation of complex systems which is able to
support domain experts in fully exploiting the benefits of the
ABMS while significantly reducing programming and
implementation efforts. The case study, concerning the
management of a three-stage supply chain, shows how easyABMS
can be effectively exploited for the agent-based modeling and
simulation of modern social and economic systems.

Keywords
Agent-Based Modeling and Simulation, Supply Chain
Management, Agent-Oriented Methodologies.

1. INTRODUCTION
For solving a wide range of social and economic problems,
several models of social and economic systems were developed by
adopting in most case (strong) simplifying assumptions which
make these models representative of the modeled system only in
particular and restrictive conditions. The simplicity of the
developed models was due not only to the nature of the problems
to be solved but also by the available tools for building and
managing these models. As the (social and economic) problems to
face are becoming more challenging and the descriptive and
predictive capabilities of the related models are becoming,
likewise, more challenging too, the traditional simplifying
assumptions and their related traditional tools are demonstrating
inadequate, and the exploitation of new and more powerful tools
for representing and managing a level of complexity, which is
more adequate for satisfying these new and challenging purposes,
is more and more required. In this context, Agent Based Modeling
and Simulation (ABMS) represents a new and powerful way for

analyzing and modeling complex systems as it is able to fully
represent a system at different levels of complexity in terms of
autonomous, goal-driven and interacting entities (agents)
organized into societies which exhibit emergent properties, that is,
properties which arise from the interactions between the
component entities and that cannot be deduced a priori simply
considering only the properties of the individual entities. The
agent-based model of a system is, then, executed to simulate the
behavior of the complete system so that knowledge of the
behaviors of the single entities (micro-level) can produce an
understanding of the overall outcome at the system-level (macro-
level).

To date, although several tools for ABMS are available [9, 10, 16,
17, 21] as well as methodologies for the development of agent-
based systems which are mainly proposed in the context of Agent-
Oriented Software Engineering (AOSE) [5], there are only a few
methodologies and related processes which are able to seamlessly
guide domain experts with limited programming expertise from
the analysis of the system under consideration to its modeling and
subsequent simulation results analysis [6, 7, 14].

To address these issues, this paper presents easyABMS [3,4], a
methodology specifically conceived for agent-based modeling and
simulation of complex systems, and exemplifies its effectiveness
in the social and economic domains through a case study which
concerns the management of a three-stage supply chain.
easyABMS aims at supporting domain experts in fully exploiting
the benefits of the ABMS while significantly reducing
programming and implementation efforts; in particular,
easyABMS defines a process which is: (i) complete as its phases
cover from the analysis of the system under consideration to its
modeling and simulation analysis; (ii) integrated as each phase
refines the model of the system which has been produced in the
preceding phase; (iii) visual as the work-products of each phase
are basically different models of the system mainly constituted by
visual diagrams based on the UML notation [20]; (iv) model-
driven as according to the Model Driven paradigm [1, 18] the
simulation code is automatically generated from the obtained
Simulation Model of the system; (v) iterative as, on the basis of
the simulation results, a new/modified and/or refined model of the
system can be obtained through a new process iteration which can
involve all or some process phases.
The remainder of this paper is organized as follows: Section 2
presents an overview of the easyABMS methodology and the
related process; Section 3 shows its application to the agent-based

modeling and simulation of a three-stage supply chain; finally,
conclusions are drawn and future works delineated.

Table 1. easyABMS: process phases, work products and main related concepts.

Process
Phase

System
Analysis

Conceptual
System

Modeling

Simulation
Design

Simulation
Code

Generation

Simulation
Set-up

Simulation
Execution

Simulation
Results
Analysis

Work
Product

Analysis Statement Conceptual System Model :
� Structural System Model
� Society Model
� Agent Model :
o Goal Model
o Behavioral Model
o Interaction Model
� Artifact Model :
o Behavioral Model
o Interaction Model

Simulation Model :
� Simulation

Context
Model

� Simulation
Agent Model

Simulation Code Simulation
Scenarios

Simulation
Results

Simulation
Analysis Reports

Main Concepts

Composed entity

Society

Simulation Context

Java Classes

Depending on the features

 of the exploited

Simulation Framework

Pro-active entity Agent Simulation Agent

 Re-active entity

Artifact

Passive entity

Artifact (Resource Manager of the
passive entity)

intra-entity
relationship

Interaction Interaction Link
among Simulation
Agents

inter-entity
relationship

2. easyABMS : AN INTEGRATED
METHODOLOGY FOR ABMS
The easyABMS methodology defines a process for ABMS
composed of seven subsequent phases from the preliminary
System Analysis to the Simulation Result Analysis. On the basis of
the obtained simulation results a new iteration of the process
which can involve all or some process phases can be executed for
achieving new or not yet reached simulation objectives.
Specifically, the process phases are the following:
− System Analysis, in which a preliminary understanding of the

system and the main simulation objectives are obtained
(Analysis Statement);

− Conceptual System Modeling, in which a model of the system
is defined in terms of agents, artifacts and societies
(Conceptual System Model);

− Simulation Design, in which a model of the system is defined
in terms of the abstractions offered by the framework which is
exploited for the simulation (Simulation Model);

− Simulation Code Generation, in which the Simulation Code
for the target simulation environment is automatically
generated starting from the model which is obtained in the
previous phase;

− Simulation Set-up, in which the Simulation Scenarios are set;
− Simulation Execution and Results Analysis, in which the

simulation results are analyzed with reference to the objectives
of the simulation identified in the System Analysis phase.

The phases related to simulation exploit the Repast Simphony
Toolkit [15, 17], which is the most popular ABMS toolkit and
provides advanced features of visual modeling of agent behaviors
and (semi)automatic code generation; moreover, for the phase of
Simulation Results Analysis, the Toolkit supports an integrated

use of several powerful analysis tools (Matlab, R, VisAd, iReport,
Jung).

For each process phase the work-products and main related
concepts are reported in Table 1 whereas a briefly description is
given in the following sub-sections; a more complete description
can be found in [3,4].

2.1 System Analysis
In the System Analysis phase the user specifies the objectives of
the simulation and analyses the system being simulated so to
obtain a preliminary understanding of the system and its
organization.

The System Analysis phase, which is based on the principle of
layering and exploits the well-known techniques of
Decomposition, Abstraction and Organization [2,8], is constituted
by a sequence of analysis steps. In each step the user produces a
new system representation by applying the in-out zooming
mechanisms [11] to the entities which compose the system
representation resulting from the preceding analysis step. The
entities which are not zoomed among two consecutive steps are
said to be projected. As the system is itself a (composed) entity, in
the first analysis step the user chooses the starting level of
abstraction for analyzing the system and zooms-in on it.

An entity can be characterized by an autonomous and goal-
oriented behavior (pro-active entity), by a pure stimulus-response
behavior (re-active entity), or can be passive; moreover, both the
rules governing entities and their evolution, and the relationships
among entities are specified. Specifically, Safety rules determine
the acceptable and representative states of an entity whereas
liveness rules determine which state transitions are feasible during
the entity evolution. Relationships can be either intra-entity
relationships (i.e. relationships among the component entities

obtained by the zooming-in of an entity) or inter-entity
relationships.

The System Analysis phase ends when the user obtains a System
Representation of the system in which each component (pro-
active, re-active, passive) entity has been represented at the level
of abstraction which is appropriate for the objectives of the
simulation. This System Representation along with a synthetic
description of the system being considered, a detailed description
of each identified entity, and the objectives of the simulation
constitutes the work-product of this phase (the Analysis
Statement).

2.2 Conceptual System Modeling
The starting point of the Conceptual System Modeling phase is the
System Representation resulting from the System Analysis phase
in terms of atomic/composed entities, their relationships, and their
rules.

Main concepts of this phase and the derivation rules from the
concepts of the Analysis Phase are reported in Table 1; the
exploitation of these rules straightforwardly leads to the first
work-product of the phase (the Structural System Model).

For each entity in the Structural System Model is then defined a
specific model which depends on the entity type (Society Model,
Agent Model, Artifact Model).

In particular:
- a Society Model details the entities which compose a Society,

their type (Agent, Artifact, Society), and the rules governing
the Society (safety rules) and its evolution (liveness rules);

- an Agent Model details the complex goal of an Agent (Agent
Goal Model), its behavior (Agent Behavioral Model), and its
interactions with other Agents and Artifacts in which the
agent is involved (Agent Interaction Model);

- an Artifact Model details the behavior of an Artifact
(Artifact Behavioral Model), and its interactions with other
Artifacts and Agents (Artifact Interaction Model).

2.3 Simulation Design
Given the Conceptual Model of the system, in this phase the user
obtains a model of the system in terms of the abstractions offered
by the framework exploited for the simulation. Currently,
easyABMS adopts as reference simulation framework the Repast
Simphony Toolkit [15, 17]. Specifically, the Simulation Design
and the Simulation Code Generation phases are supported by the
Repast Simphony Development Environment [12], whereas the
Simulation Set-up, the Simulation Execution and the Simulation
Results Analysis phases are supported by the Repast Simphony
Runtime Environment [13]. The Repast Simphony Toolkit was
chosen as the most popular ABMS toolkit [14] and provides both
the advanced features of visual modeling of agent behaviors and
the (semi)automatic generation of code [15]. Moreover, several
powerful analysis tools as Matlab, R, VisAd, iReport, Jung, can
be directly invoked from the Repast Simphony Runtime
Environment [13].

The Simulation Model is obtained by exploiting the derivation
rules as they emerge from the relationships among the main
concepts of each phases reported in Table 1. Specifically, each
Society becomes a Repast Simulation Context (SContext): the
System is the root SContext and any enclosed Society is a (sub)-
Context of the corresponding enclosing Society. As Artifacts and

Agents become Repast Simulation Agents (SAgents), the Activities
which compose their behaviors are easily converted into Repast
Simulation Behaviors (SBehaviors); moreover, the relationships
derived from Interactions among Agents and Artifacts generate
Repast Network Projections.

2.4 The other Simulation related phases
According to the Model Driven paradigm [1, 18], the Repast
Simphony Development Environment [12] is able to automatically
generate a great part of the simulation code from the obtained
Simulation Model of the system. The user can therefore access
and modify all the generated code extending it with additional
Java and XML code. The obtained code is compiled by the Repast
Simphony Development Environment using a Java compiler and
then loaded in the Repast Simphony Runtime Environment.

Before starting the simulation the user sets: (i) the simulation
scenario by specifying the values of the simulation parameters
defined in the Simulation Design phase; (ii) the presentation
preferences for the simulation results concerning the system
properties of interest identified during the Simulation Design
phase.

The simulation of the system is then executed by the Repast
Symphony Runtime Environment on the basis of the specified
simulation parameters. The simulation results concerning the
system properties of interest for the user are presented to the user
on the basis of the choices made during the simulation set-up.

Finally, the user analyses the simulation results, also by exploiting
the analysis tools (Matlab, R, VisAd, iReport, Jung) which can be
directly invoked from the Repast Simphony Runtime Environment
so to verify whether the objectives of the simulation individuated
during the System Analysis phase have been achieved. Where
objectives have not been achieved or where new simulation
objectives emerge, the user can execute a new iteration of the
process which can then involve all or some process phases so that
the new/modified and/or refined models of the system make it
possible to achieve the remaining/new simulation objectives.

3. AGENT-BASED MODELING AND
SIMULATION OF A THREE-STAGE
SUPPLY CHAIN
To show how the easyABMS methodology can be effectively
exploited for the agent-based modeling and simulation of modern
social and economic systems a supply chain management scenario
is considered. Specifically, the reference scenario, inspired by the
well-known beer game [19], concerns a supply chain constituted
of production companies (producers), carrier companies
(carriers), and sales companies (vendors). A producer produces a
single type of perishable good, manages orders received by
vendors and uses a carrier for delivering the ordered quantity of
goods to the ordering vendor. A vendor sells goods to final
consumers and manages its own stock of goods.

3.1 System Analysis
In this phase a System representation, which highlights its
component entities (pro-active, re-active, passive) and their
relationships, is obtained. In particular, the level of abstraction of
each component entity, which is obtained by applying the in-out
zooming mechanisms during the different analysis steps, strongly

depends on the objectives of the simulation (see Section 2.1).
With reference to the supply chain under consideration, an agent-
based model could be defined and simulated in order to compare
and evaluate different production, pricing and stock management
policies which producers and vendors wish to adopt to maximize
their respective profits by maximizing incomes and minimizing
costs [19]. In particular, a producer may periodically decide on
the amount of goods to produce and the corresponding price, and
a vendor may periodically establish the price of the good and the
amount of goods to order. In this context, the simulation aimed to
compare three different production and pricing policies for a
producer to obtain both qualitative and quantitative information
about them and their main parameters [7, 19]:
- changeless: the monthly production and the product price

which have been fixed during the simulation set-up never
change during the simulation execution;

- incremental: if the last month revenue has increased from the
previous month, the monthly production and the product
price increase by ∆Pr and ∆Pp respectively, otherwise their
values are those of the last month;

- adaptive: if the last month revenue has increased from the
previous month, the monthly production and the product
price increase by ∆PrI and ∆PpI respectively, otherwise the
monthly production and the product price decrease by ∆PrD
and ∆PpD respectively.

The System Representation obtained on the basis of the identified
simulation objectives is reported in Figure 1a. It is worth noting
that the Producer and the Vendor entities have been zoomed-in
during the analysis steps (see Section 2.1). These identified
entities are further described, along with their relationships and
their safety and liveness rules, in a textual format enriched by
tables and diagrams which are not reported due to space
limitations.

3.2 Conceptual System Modeling
The Structural System Model derived from the System
Representation which is obtained from the System Analysis phase
(Figure 1.a) is reported in Figure 1.b; in particular, as the focus is
on the Producer, in the first iteration of the process, the level of
representation chosen for the Vendor is more abstract with respect
to the level resulting from the Analysis phase and the
relationships refer to the involved Agents and/or Artifacts, thus
crossing the boundaries of the Societies.

For each entity in the Structural System Model is defined the
corresponding Society, Agent or Artifact Models (see Section 2.2).
Due to limitations space, in the following sub-section only the
Society Model for the Producer Society, the Agent Model for the
Vendor Agent and the Artifact Model for the Carrier Artifact are
reported.

<<Re-active>>

Carrier

<<Passive>>

Buyer Database

<<Pro-active>>
Order

Management Office

<<Pro-active>>
Warehouse

Management Office

<<Pro-active>>
Production

Management Office

<<Pro-active>>
Producer

My-Supply Chain

<<Pro-active>>
Vendor

<<Pro-active>>
Warehouse Management

Office

<<Pro-active>>
Marketing Off ice

intra-entity relantionship
inter-entity relantionship

(a) An overview of the System Representation obtained in the
System Analysis phase

<<Artifact>>

Carrier

<<Agent>>

Vendor

<<Artifact>>
Resource Manager

Buyer Database

<<Agent>>
Order

Management Office

<<Agent>>
Warehouse

Management Office

<<Agent>>
Production

Management Office

<<Society>>
Producer

<<Society>>
My-Supply Chain

(b) An overview of the Structural System Model obtained in the
Conceptual Modeling phase

Figure 1. System representations resulting from the Analysis
and the Conceptual Modeling phases.

3.2.1 The Producer Society Model
The Society Model of the Producer Society (see Figure 1.b) is
shown in Figure 2 in which the different entities which compose
the Producer Society, and the safety and liveness rules governing
the Society and its dynamics are reported.

Entity Type

Order
Management

Office
Agent

Production
Management

Office
Agent

Warehouse
Management

Office
Agent

Buyer
Database

Artifact
(Resourc

e
Manager)

Safety rules
S_Prod1. WS (t) = PG (t) – SG(t) – DG(t);

where WS(t) is the warehouse stocks at
time t; PG(t) is the quantity of goods that
have been produced until time t; SG(t) is
the quantity of goods which have been
used to fulfill orders until time t; DG(t) is
the quantity of goods which, at time t,
have been eliminated due to expiration.

S_Prod2. ...

Liveness rules
L_Prod1. The Order Management Office

cannot start satisfying an order that has
not been correctly and completely
received.

L_Prod2. …

Figure 2. A part of the Society Model of the Producer Society.

3.2.2 The Vendor Agent Model
Part of the Agent Model of the Vendor Agent is shown in Figure
3. In particular:

- Figure 3.a shows the Vendor Goal Model where the two
goals (Stock Management and Price List Updating) which
compose the complex goal of the Vendor Agent are specified
along with their achievement relationships (in this case the
two goals can be achieved independently);

- Figures 3.b illustrates a part of the Vendor Behavioral
Model; in particular, the Vendor Activity Table which
specifies the activities (Order Planning, Goods Reception,
and Price Definition) which the Vendor Agent executes for
achieving its goals, along with the pre and post conditions
and the execution schedule (periodical or triggered). Each

activity in the Agent Activity Table is further described by:
(i) an UML [20] Activity Diagram which details the flow of
execution (control flow) of the actions into which the activity
can be decomposed; (ii) an Activity Action Table which
reports, for each single action, a synthetic description of the
action along with its pre and post conditions, the capabilities
required for carrying out the action and its type (computation
or interaction). As an example, the figure shows the UML
Activity Diagram for the Order Planning activity;

- Figure 3.c reports the Vendor Interaction Model which
specifies, for each action of the interaction type, the activity
in the Agent Activity Table in which the interaction appears
along with the initiator, the partners of the interaction, and
the exchanged information.

(sub)goal

Vendor_Sg1 Vendor_Sg2

Vendor_Sg1: Stock Management
Vendor_Sg2: Price List Updating

(sub)goal

Vendor_Sg1 Vendor_Sg2

Vendor_Sg1: Stock Management
Vendor_Sg2: Price List Updating

(a) The Vendor Goal Model

- Vendor Activity Table -

Triggered……Vendor_Sg2Price
Definition

Triggered……Vendor_Sg1Goods
Reception

Periodical……Vendor_Sg1Order
Planning

Execution
schedule

Post-
cond.

Pre-
cond.

GoalActivity

Triggered……Vendor_Sg2Price
Definition

Triggered……Vendor_Sg1Goods
Reception

Periodical……Vendor_Sg1Order
Planning

Execution
schedule

Post-
cond.

Pre-
cond.

GoalActivity

- UML Activity Diagram for the Order Planning Activity -

Sales
Evaluation

Expired Goods
Discarding

Order
Composition

[Order refused]

[Order not Empty]

[Order Accepted]

Pending Order List
Updating

[Order
Empty]

Pruducer
Feedback

Order
Placing

Legenda

Time Signal

Send Signal

Accept Signal

Action

Decision

Final node

Flow/edge

Sales
Evaluation

Expired Goods
Discarding

Order
Composition

[Order refused]

[Order not Empty]

[Order Accepted]

Pending Order List
Updating

[Order
Empty]

Pruducer
Feedback
Pruducer
Feedback

Order
Placing
Order
Placing

Legenda

Time Signal

Send Signal

Accept Signal

Action

Decision

Final node

Flow/edge

(b) A part of the Vendor Behavioral Model

Interaction Activity Initiator Partners Exchanged
Information

Order
Placing

Order
Planning

Vendor Order
Management

Off ice

Order Data

Producer
Feedback

Order
Planning

Order
Management

Off ice

Vendor Order Data
Decision on

order acceptance
Goods
Delivering

Goods
Reception

Carrier Vendor Delivery Date

New Price Price
Def inition

Order
Management

Off ice

Vendor Product Price

(c) The Vendor Interaction Model

Figure 3. A part of the Agent Model of the Vendor Agent.

3.2.3 The Carrier Artifact Model
As for the Agent Model (see Section 3.2.1), an Artifact Model
describes the behavior of an Artifact (Artifact Behavioral Model),
and its interactions with other Artifacts and Agents (Artifact
Interaction Model); however, as an Artifact is a re-active entity

offering a set of services, the execution schedule of its Activities is
always of the triggered type. In Figure 4 a part of the Artifact
Model of the Carrier Artifact is reported.

3.3 Simulation Design
Figure 5 shows a portion of the Simulation Model produced by
adopting as the reference simulation framework the Repast
Simphony Toolkit [15, 17]. In particular, Figure 5.a shows the
organization of the Simulation Context (SContexts) whereas
Figure 5.b shows the set of Simulation Behavior (SBehavior) of
the Simulation Agent (SAgent) representing a Vendor.
Specifically, for the Vendor three SBehaviors are defined, one for
each Activity introduced in the Agent Behavioral Model during
the Conceptual Modeling phase (see Figure 3.b). As an example,

the Order Planning SBehavior in figure 5.b corresponds to the
Order Planning Activity of the Vendor Agent reported in figure
3.b. The seamless transition between the two models is
highlighted by the comparison between these two figures which
manifests the straightforwardness of the mapping among the
behavior of an Agent/Artifact, defined during the Conceptual
Modeling phase in terms of Activities expressed by using the
UML notation, and the behavior of an SAgent, defined during the
Simulation Design phase in terms of SBehaviors.

- Carrier Activity Table -

Activity Pre-
cond.

Post-
cond.

Execution
schedule

Goods
Delivering

… … Triggered

- UML Activity Diagram for the Goods Delivery Activity -

Delivery
Request

Evaluation

Goods
Delivery
Request

Goods
Withdrawal
Notification

Goods
Delivering

Goods
Delivered

(b) A part of the Carrier Behavioral Model

Interaction Activity Initiator Partners Exchanged
Information

Goods
Delivery
Request

Goods
Delivering

Order
Management
Office

Carrier Order Data

Goods
Withdrawal
Notification

Goods
Delivering

Carrier Warehouse
Management
Office

Withdrawal Date

Goods
Delivering

Goods
Delivering

Carrier Vendor Delivery Date

Goods
Delivered

Goods
Delivering

Carrier Order
Management
Office

Delivery Date
Delivery Status

(c) The Carrier Interaction Model

Figure 4. A part of the Artifact Model of the Carrier Artifact.

(a) The Simulation Context (b) The Simulation Behavior of the SAgent
representing a Vendor

Figure 5. A part of the Simulation Model.

3.4 Simulation execution and result analysis
Starting from the Simulation Model described in the previous
phase, great part of the simulation code is automatically generated
by the Repast Simphony Development Environment [12],
compiled by using a Java compiler and then loaded into the
Repast Simphony Runtime Environment for the Simulation Set-up
and Execution. In particular, according to the simulation
objectives, the execution of the resulting Simulation Model made
it possible to compare the three different considered production
and pricing policies for the producer: changeless, incremental,
and adaptive. With reference to Figure 6, which illustrates the
diagram of the profit for the Producer Agent, it is possible to
appreciate the great advantage given by the adoption of the
adaptive production and pricing policy and how the incremental
policy can lead to the complete failure of the enterprise if not
opportunely corrected.

-€25.000,00

-€20.000,00

-€15.000,00

-€10.000,00

-€5.000,00

€0,00

€5.000,00

€10.000,00

€15.000,00

€20.000,00

€25.000,00

€30.000,00

€35.000,00

€40.000,00

€45.000,00

€50.000,00

€55.000,00

€60.000,00

€65.000,00

€70.000,00

€75.000,00

1 16 31 46 61 76 91 106121136151166 181196211226241

P
r
o
fi
t

week

changeless

incremental

adaptive

Figure 6. Profit for the Producer Agent under three different
production and pricing policies.

4. CONCLUSIONS
To date, although several tools for ABMS are available, there are
few methodologies and related processes which are able to cover
all the phases from the analysis of the system under consideration
to its modeling and subsequent simulation analysis. Moreover, the
absence of visual modeling tools and techniques for ABMS often
constitutes an entry barrier for whoever does not have advanced
programming skills. To address these issues in this paper
easyABMS, an integrated and iterative methodology for agent-
based modeling and simulation of complex systems, has been
presented along with a case study concerning the management of
a three-stage supply chain which shows the effectiveness of the
methodology in social and economic domains.
EasyABMS aims at supporting domain experts in fully exploiting
the benefits of the ABMS while significantly reducing
programming and implementation efforts, and represents a
methodological approach capable to:
− guiding the domain experts from the analysis of the system

under consideration to its modeling and simulation, as the
phases which compose the process, the work-products of each
phase, and the (seamless) transitions among the phases are
fully specified;

− letting users concentrate their efforts on the modeling of the
system and simulation analysis rather than the programming

and implementation details, as the well-known Model Driven
paradigm, in which the code is automatically generated from a
set of (visual) models of the system, is adopted.

Currently, except for System Analysis and Conceptual System
Modeling, all the phases of the process defined by easyABMS
exploit the Repast Simphony Toolkit. Future research efforts will
be devoted to: (i) extend the Repast Simphony Toolkit so to
obtain an integrated ABMS environment which fully supports all
the process phases; (ii) extensively experiment easyABMS in
significant case studies concerning relevant social, financial,
economic, and logistic issues; (iii) experiment the adoption of a
meta-simulation framework for the Simulation Design phase so to
obtain a Platform Independent Simulation Model which can be
then translated into different platform-dependent simulation
models.

5. REFERENCES
[1] C. Atkinson and T. Kühne. Model-driven development: A

metamodeling foundation. IEEE Software, 20(5):36-41,
2003.

[2] G. Booch. Object-Oriented Analysis and Design with
Applications. Addison-Wesley, 1994.

[3] A. Garro, W. Russo. An integrated agent-based process for
the simulation of complex systems. Proceedings of the
International Conference on Economic Science with
Heterogeneous Interacting Agents (ESHIA), Warsaw,
Poland, 19-21 June, 2008.

[4] A. Garro, W. Russo. An integrated and iterative process for
agent-based modeling and simulation. Proceedings of the 5th
International Conference of the European Social Simulation
Association (ESSA), Brescia, Italy, 1-5 September, 2008.

[5] P. Giorgini, and B. Henderson-Sellers (Eds.). Agent-
Oriented Methodologies, Idea Group Inc., 2005.

[6] T. Iba and N. Aoyama. Understanding Social Complex
Systems with PlatBox Simulator. In Proc. of the 5th
International Conference on Computational Intelligence in
Economics and Finance (CIEF2006), pages 64-67, Taiwan,
October 2006.

[7] T. Iba, Y. Matsuzawa, and N. Aoyama. From Conceptual
Models to Simulation Models: Model Driven Development
of Agent-Based Simulations. In Proc. of the 9th Workshop
on Economics and Heterogeneous Interacting Agents. Kyoto,
Japan, 2004.

[8] N. R. Jennings. An agent-based approach for building
complex software systems. Commu-nications of the ACM,
44(4):35-41, 2001.

[9] MASON Home Page. George Mason University, Fairfax,
VA, available at http://cs.gmu.edu/~eclab/projects/mason/.

[10] N. Minar, R. Burkhart, C. LAngton, and M. Askenazi. The
Swarm Simulation System: A Toolkit for Building Multi-
Agent Simulations. Working Paper 96-06-042. Santa Fe
Institute, 1996.

[11] A. Molesini, A. Omicini, A. Ricci, E. Denti. Zooming multi-
agent systems. In Proc of the 6th International Workshop on
Agent-Oriented Software Engineering (AOSE 2005),
AAMAS 2005, Utrecht, The Netherlands, 2005.

[12] M. J. North, T.R. Howe, N.T. Collier, and J.R. Vos. The
Repast Simphony Development Environment. In Proc. of the

Agent 2005 Conference on Generative Social Processes,
Models, and Mechanisms, Chicago, IL , October 2005.

[13] M. J. North, T.R. Howe, N.T. Collier, and J.R. Vos. Repast
Simphony Runtime System. In Proc. of the Agent 2005
Conference on Generative Social Processes, Models, and
Mechan-isms, Chicago, IL, October 2005.

[14] M. J. North, C. M. Macal. Managing Business Complexity:
Discovering Strategic Solutions with Agent-Based Modeling
and Simulation. Oxford University Press, 2007.

[15] M.J. North, E. Tatara, N.T. Collier, and J. Ozik. Visual
Agent-Based Model Development with Repast Simphony. In
Proc. of the Agent 2007 Conference on Complex Interaction
and Social Emergence. Northwestern University, Evanston,
IL, November2007.

[16] M. Resnick. Turtles, Termites, and Traffic Jams:
Explorations in Massively Parallel Mi-croworlds. MIT Press,
Cambridge, Mass., 1997.

[17] ROAD (Repast Organization for Architecture and Design).
Repast Home Page, Chicago, IL, available as
http://repast.sourceforge.net/.

[18] D. C. Schmidt. Model-Driven Engineering. IEEE Computer,
39(2):41-47, 2006.

[19] F. Strozzi, J. Bosch, and J.M. Zaldì. Beer game order policy
optimization under changing customer demand. Decis.
Support Syst., 42(4):2007, Elsevier Science Publishers B. V.,
Amsterdam, The Netherlands.

[20] Unified Modeling Language (UML) Specification. Version
2.1.2. Object Management Group Inc., 2007.

[21] U. Wilensky. NetLogo. Center for Connected Learning and
Computer-Based Modeling, Northwestern University,
Evanston, IL, 1999.

