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ABSTRACT 
Wireless sensor networks (WSNs) are emerging as powerful 
platforms for distributed embedding computing. Currently, 
flexible frameworks and middlewares are emerging to facilitate 
WSN application development which is usually very application-
specific and involves the programming of low-level mechanisms 
for enabling sensing, communication and energy saving. SPINE is 
a domain-specific framework for distributed processing of sensed 
data which is currently being applied to the rapid prototyping of 
body sensor networks applications for human body activity 
recognition. In this paper we present ASPINE, an agent-oriented 
design of the SPINE framework. According to the agent-
paradigm, each base station-side and sensor node-side component 
of SPINE (coordinator, sensor manager, function manager, 
communication manager) is designed as a software interacting 
agent with specific capabilities. The set of agents of a node 
constitute a local multi-agent system (MAS) which carries out a 
local goal (e.g. sensing and feature extraction on sensed data) 
whereas a set of cooperating nodes represents a distributed MAS 
pursuing a global goal (e.g. classification of human body 
postures). Finally, we also describe the design of an 
implementation of ASPINE based on MAPS, an agent platform 
for Java SunSPOTs. 

Categories and Subject Descriptors 
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems; 
D.2.11 [Software Engineering]: Software Architectures 

General Terms 
Design, Language 

Keywords 
Wireless sensor networks, SPINE, agent programming paradigm. 

1. INTRODUCTION 
Due to recent advances in electronics and communication 
technologies, Wireless Sensor Networks (WSNs) have been 
introduced and are currently emerging as one of the most 
disruptive technologies enabling and supporting next generation 
ubiquitous and pervasive computing scenarios [10]. WSNs have a 
high potential to support a variety of high-impact applications 
such as disaster/crime prevention and military applications, 
environmental applications, health care applications, and smart 
spaces. 

When applied to the human body, WSNs are usually called 
Wireless Body Sensor Networks (WBSNs) [14]. This area is 
particularly dense of interest because real-world applications of 

WBSNs aim to improve the quality of life by enabling at low cost 
continuous and real-time non-invasive medical assistance. Health-
care applications where WBSNs could be greatly useful include 
early detection or prevention of diseases, elderly assistance at 
home, e-fitness, rehabilitation after surgeries, motion and gestures 
detection, cognitive and emotional recognition, medical assistance 
in disaster events, etc. 

However, programming WBSN applications is a complex task not 
only because of the intrinsic complexity of the problems but also 
due to the hard constraints of the wearable devices and to the lack 
of proper and effective software abstractions. To deal with this 
issue, domain-specific frameworks could be developed and 
effectively adopted. In particular, The SPINE Open Source 
project [11] aims to build a framework useful to decrease 
development time and improve interoperability among signal 
processing intensive applications based on WBSNs. The SPINE 
framework provides libraries of protocols, utilities and processing 
functions, and a lightweight Java API that can be used by local 
and remote applications to manage the sensor nodes or issue 
service requests. By providing these abstractions and libraries, 
that are common to most signal processing algorithms used in 
WBSNs for sensor data analysis and classification, SPINE also 
provides flexibility in the allocation of tasks among the WBSN 
nodes and allows the exploitation of implementation tradeoffs. 
Currently SPINE is implemented for several sensor platforms 
based on TinyOS [13] and Z-Stack [15] by using the 
programming paradigms offered by such platforms (event and 
component-based programming in TinyOS and C programming in 
Z-Stack) and is being effectively applied to the development of 
applications in the health care domain [7].  

However we believe that the exploitation of the agent-oriented 
programming paradigm to develop WBSN applications could 
provide more effectiveness as demonstrated by the application of 
agent technology in several key application domains [3, 9]. As a 
consequence, in this paper, we propose an agent-oriented design 
of SPINE, named ASPINE, which extends the functionalities 
provided by SPINE and allows for a more rapid development of 
signal processing intensive WBSN applications in terms of agent-
based systems. 

The rest of this paper is organized as follow. Section 2 provides 
an overview of the SPINE software architectures and, in 
particular, describes its base station-side and sensor node-side 
components. Section 3 introduces the design of ASPINE, which is 
exemplified through a simple yet effective in-node signal 
processing task. Section 4 presents an initial design of ASPINE 
on MAPS, an agent platform for Java Sun Spots. Finally 
conclusions are drawn and on-going research anticipated. 



2. AN OVERVIEW OF SPINE (SIGNAL 
PROCESSING IN-NODE ENVIRONMENT) 
SPINE [6] is a framework for distributed signal processing in 
Wireless Body Sensor Networks (WBSN) based on the following 
principles: 
- Open Source. SPINE is developed as an Open Source project 

to establish a broad community of users and developers that 
contribute to extend the framework with new capabilities and 
applications (http://spine.tilab.com).  

- Interoperability through high-level APIs. SPINE provides 
local and remote applications with lightweight Java APIs that 
can be used by local and remote applications to manage the 
sensor nodes or send service requests, and are easily portable 
to devices of various capabilities, such as PCs or mobile 
phones, that can be used as WBSN coordinator. 

- High-level abstractions. SPINE provides libraries of 
protocols, utilities and processing functions; hence, it 
simplifies the task of application developers by raising the 
level of abstraction. The layer defined by the SPINE libraries 
allows designers to focus on application-specific issues and 
program at a higher level of abstraction than TinyOS. 

- Distributed implementations of classification algorithms. 
SPINE simplifies the development of applications that 
require complex signal processing algorithms and classifiers. 
For example SPINE supports distributed implementation of 
classification algorithms (at the base station and at the sensor 
nodes) to reduce the amount of data to be transmitted and 
save energy. 

Currently the SPINE architecture centers on a star topology 
including one or more sensor nodes and a base station (or WBSN 
coordinator node). The coordinator typically manages the WBSN, 
collects and analyzes the data received from the sensor nodes, and 
acts as a gateway to connect the WBSN with wide area networks 
for remote data access. 

In particular, SPINE has two main software components: one at 
the sensor node and the other one at the WBSN coordinator. In 
the following a description of the version 1.2 of SPINE developed 
for TinyOS is briefly presented. 

The sensor node component, designed for TinyOS environment 
and written in nesC language [5], includes several utilities for 
signal processing such as data storage buffers, mathematical 
function libraries and common feature extractors used in signal 
processing. The SPINE framework has been structured to be 
platform independent and may work with different platforms 
running TinyOS 2.x. In this way commercial boards (such as 
TelosB and MicaZ) as well as proprietary ones may use SPINE 
functionalities, once interfaces with the sensors are implemented. 

The coordinator component consists of a Java-based interface that 
an application running on the base station itself or on a remote 
server can use to manage the sensor nodes or issue service 
requests. SPINE provides a lightweight Java API that is easily 
portable to devices of various capabilities that can be used as 
gateway, such as a PC or a mobile phone.  

The main functional components of the software architecture of 
the current version 1.2 of SPINE are reported in Figure 1. 

On the coordinator, User Applications manage a SPINE network 
through a lightweight and well-defined API. The surface level of 
SPINE lets registered applications be notified of high-level events 
generated by the WBSN under-control, such as discovery of new 
nodes, sensor data transmission, node alarms and system 
messages (e.g. low battery warnings). Commands issued by the 
user application and network generated events are respectively 
coded in lower-level SPINE messages and decoded in higher-
level information by the SPINE Host Communication Manager 
which takes care of packets generation and retrieval and interfaces 
with the specific software components of the host platform to 
access the physical radio module to transmit/receive packets 
to/from the WBSN. 

On the node side, the SPINE framework is responsible of 
providing developers abstractions of hardware resources such as 
sensors and the radio, a default set of ready-to-use common signal 
processing functions and, most important, a flexible and modular 
architecture to customize and extend the framework itself to 
support new physical platforms and sensors and introduce new 
signal processing services. In particular, the SPINE Node 
Communication Manager acts as the counterpart of the host 
communication manager; in addition, it possibly takes into 
account management policies to optimize e.g. energy 
consumption by an intelligent use of the radio module. The 
SPINE Sensors Controller manages and abstracts the sensors on 
the node platform, providing a standard interface to the diverse 
sensor drivers. It is responsible of sampling the sensors and 
storing the sensor readings in proper data buffers. The SPINE 
Node Manager is the central component, responsible of 
recognizing the remote requests and dispatching them to the 
proper components. Finally, the SPINE Processing Manager 
consists of a dispatcher for the actual processing services and a 
standard interface for user-defined services integration. 
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Figure 1. The software architecture of SPINE 1.2. 



3. AN AGENT-ORIENTED DESIGN OF 
SPINE: ASPINE 
The SPINE architecture overviewed in section 2 was designed by 
using an agent-based approach. The so obtained agent-oriented 
design of SPINE (or ASPINE) adheres to the organization of the 
SPINE architecture so consisting of base station-side and sensor-
node-side agents.  
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Figure 2. The ASPINE architecture. 

 
Figure 2 shows the architecture of ASPINE through a class 
diagram. In particular, the following core agents are defined: 
Base station-side 
- The CoordinatorAgent is responsible for managing the set of 

nodes of the sensor network under control. Management 
involves configuring and monitoring nodes; 

- The ApplicationAgents are agents implementing application-
specific or domain-specific logics; 

- The CommunicatorAgent allows the CoordinatorAgent and 
the ApplicationAgents to interact with the sensor nodes 
through an efficient over-the-air application-level protocol. 

Sensor node-side 
- The SensorManagerAgent manages the sensor/actuator 

resources of the node through specific SensorAgents able to 
interact with specific sensors (temperature, light, 
accelerometer, etc). 

- The CommunicationManagerAgent manages the 
communication with the CommunicatorAgent and among the 
CommunicationManagerAgents, located at different sensor 
nodes, by means of specific CommunicationAgents. 

- The ProcessingManagerAgent supports one or more local 
processing tasks or parts of global processing tasks through 
ProcessingAgents. They are able to perform computation on 
sensed data (e.g. feature extraction) and data aggregation. 

3.1 In node signal processing task based on 
ASPINE: an example 
An example of in-node signal processing task is portrayed in 
Figure 3 by means of a data-flow model based on subtasks. In 
particular, the sensed data periodically produced by the sensing 
subtask acting on a 3-axial accelerometer are split for the 
computation of the features Mean on all three axes (XYZ), and 
Min and Max on axis X. Each triple of computed features 
(<Mean(AccXYZ), Min(AccX), Max(AccX)>) are aggregated by 
the aggregation subtask (Aggr) and sent to the coordinator node 
by the data transmission subtask (Sender) as soon as aggregated 
data are available. 
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Figure 3. Data-flow-based model of an in-node signal 

processing task. 
The ASPINE design of the model of Figure 3 is shown in Figure 
4. 
 

AccelerometerAgent
-chX:double[];
-chY:double[];
-chZ:double[];
- samplingRate:do uble;

+setSOnCh(AID, Channel, S:in t):void

MeanAgent
meanChX:double
meanChY:double
meanChZ:double

-mean(do uble[]):doub le

MinAgent
minChX:double
-min(double[]):do uble

MaxAgent
maxCh X:double
-max(d ouble[]):dou ble

AggregatorAgent
aggrData:d ouble[]

-aggregatio n():void

SenderAgent
data:d ouble[]

 
Figure 4. ASPINE-base design of the example in-node signal 

processing task. 
 
The AccelerometerAgent interacts with the accelerometer sensor 
and, according to the set sampling rate (samplingRate), acquires 
one sample per channel (X, Y, Z) and stores them into the 
corresponding buffers chX, chY, chZ. Once S samples are 
acquired the AccelerometerAgent passes them to the MinAgent, 
MaxAgent and MeanAgent. These relationships are created 



through the method setSOnCh(AID, Channel, S), where AID is 
the agent identifier, Channel refers to the channels to be 
considered, and S is the number of samples. In this case, all 
agents are based on the same S but on different channels. In 
particular, MinAgent, MaxAgent and MeanAgent receive the last 
acquired S samples respectively from the chX buffer, from the 
chX buffer, and from the chX, chY, and chZ buffers. Upon 
reception of such data, the agents compute their respective 
functions and pass the results to the AggregatorAgent. This waits 
for the aggregation of the data triple aggrData=<minChX, 
maxChX, <meanChX, meanChY, meanChZ>> and passes it to 
the SenderAgent, a specific CommunicationAgent, which, in 
turns, transmits it to the CommunicatorAgent located at the base 
station. 
 

4. TOWARDS AN ASPINE 
IMPLEMENTATION BASED ON MAPS 
In this section we describe a design of ASPINE through the 
MAPS framework [1] which provides a real basis for its full-
fledged Java implementation. 

4.1 An overview of MAPS 
MAPS (Mobile Agent Platform for Sun SPOTs) is an innovative 
Java-based framework for wireless sensor networks based on Sun 
SPOT technology [12] which enables agent-oriented 
programming of WSN applications.  

MAPS has been appositely defined for resource-constrained 
sensor nodes; in particular the requirements on which it is based 
are the following:  

(i) Component-based lightweight agent server architecture. This 
implies the avoidance of heavy concurrency models and, 
therefore, the exploitation of cooperative concurrency or single-
threading to run agents. 

(ii) Lightweight agent architecture to efficiently execute and 
migrate agents.  

(iii) Minimal core services. The main core services are: agent 
migration, sensing capability access, agent naming, agent 
communication, and timing. The agent migration service allows 
an agent to be moved from one sensor node to another by 
retaining code, data and execution state. The sensing capability 
access service allows agents to access to the sensing capabilities 
of the sensor node, and, more generally, to its resources 
(actuators, input signalers, flash memory). The agent naming 
service provides a region-based namespace for agent identifiers 
and agent locations. The agent communication service which 
allows local and remote one-hop message-based communications 
among agents. The timing service allows agents to set timers for 
timing their actions. 

(iv) Plug-in-based architecture extensions. Any other service 
must be defined in terms of one or more dynamically installable 
components (or plug-ins) implemented as single mobile agent or 
cooperating mobile agents. 

(v) Java as programming language for agents. 

The architecture of MAPS is reported in Figure 5. In particular: 

- The mobile agent execution engine (MAEE) is the 
component which supports the execution of agents by means 
of an event-based scheduler enabling cooperative 
concurrency. The MAEE handles each event emitted by or to 
be delivered at the mobile agent (MA) through decoupling 
event queues. The MAEE interacts with the other core 
components to fulfill service requests (message transmission, 
sensor reading, timer setting, etc) issued by the MAs. 

- The mobile agent migration manager (MAMM) supports the 
migration of agents from one sensor node to another. In 
particular, the MAMM is able to: (i) serialize an MA into a 
message and send it to the target sensor node; (ii) receive a 
message containing a serialized MA, deserialize and activate 
it. The agent serialization format includes code, data and 
execution state. 

- The mobile agent communication channel (MACC) enables 
inter-agent communications based on asynchronous 
messages. Messages can be unicast, multicast or broadcast. 

- The mobile agent naming (MAN) provides agent naming 
based on proxies to support the MAMM and MACC 
components in their operations. The MAN also manages the 
(dynamic) list of the neighbor sensor nodes. 

- The timer manager provides the timer service which allows 
for the management of timers to be used for timing MA 
operations. 

- The resource manager (RM) provides access to the sensor 
node resources: sensors/actuators, battery, and flash memory. 
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Figure 5. The MAPS architecture. 

4.1.1 Programming abstractions of MAPS 
The main programming abstractions of MAPS are Agents and 
Events. While events formalize interaction among components 
and agents, agents are the active entities whose behavior is 
modeled as a multi-plane state machine (MPSM). Thus MPSM-
based agent behavior programming allows exploiting the benefits 



deriving from three paradigms for WSN programming: event-
driven programming [5], state-based programming [8] and mobile 
agent-based programming [4, 2]. 

The communication among agents, between agents and system 
components, and, sometimes, among components are based on 
Event objects. An Event object is composed of: 
- sourceID, which is the agent/component identifier of the 

event source; 
- targetID, which is the agent/component identifier of the 

event target; 
- typeName, which represents the name of the event types 

which are grouped according to their specific function; 
- params, which include the event data organized as a chain of 

pairs <key, value>; 
- durationType, which specifies the event duration. It can 

assume the following three values: 
o  NOW, for instantaneous events; 
o  FIRST_OCCURRENCE, for events which wait for a 

specific value to occur; 
o  PERMANENT. In this case, the event is sent every time 

that values set in the event parameters are reached. 

The agent behavior consists of: 
- Global variables (GV) which represent the data of the MA 

including the MA identity. 
- Global functions (GF) which consist of a set of supporting 

functions which can access GV but cannot invoke neither 
core primitives nor other functions. 

- Multi-plane State Machine (MPSM) which consists of a set 
of planes. Each plane may represent the behavior of the MA 
in a specific role. In particular a plane is composed of: 
o Local variables (LV) which represent the local data of a 

plane. 
o Local functions (LF) which consist of a set of local plane 

supporting functions which can access LV but cannot 
invoke neither core primitives nor other functions. 

o ECA-based Automata (ECAA) which represents the 
dynamic behavior of the MA in that plane and is 
composed of states and mutually exclusive transitions 
among states. Transitions are labeled by ECA rules: 
E[C]/A, where E is the event name, [C] is a boolean 
expression based on the GV and LV variables, and A is 
the atomic action. A transition t is triggered if t originates 
from the current state (i.e. the state in which the ECAA 
is), the event with the event name E occurs and [C] holds. 
When the transition fires, A is first executed and, then, the 
state transition takes place. In particular, the atomic action 
can use GV, GF, LV, and LF for performing 
computations, and, particularly, invoking the core 
primitives (Figure 6; see [1] for more details) to 
asynchronously emit one or more events. The delivery of 
an event is asynchronous and can occur only when the 
ECAA is idle, i.e. the handling of the last delivered event 
(ED) is completed. 

- Event dispatcher (ED) which dispatches the event delivered 
by the MAEE to one or more planes according to the events 
the planes are able to handle. In particular, if an event must 

be dispatched to more than one plane, the event dispatching 
is appositely serialized. 

send(SourceMA, TargetMA, EventName, Params, Local)
SourceMA  = id of the invoking MA 
TargetMA  = id of the MA target |  
            id of the Group target | 
            ALL for event broadcast to neighbors 
EventName = name of the event to be sent 
Params    = set of event parameters encoded 
            as pairs <attribute, value> 
Local     = local (true) or remote (false) scoped event 
 
create(SourceMA, MAId, MAType, Params, NodeLoc) 
MAId    = id of the MA to be created 
MAType  = type of the MA to be created 
Params  = agent creation parameters 
NodeLoc = node location of the created agent 
 
clone(SourceMA, MAId, NodeLoc) 
MAId    = id of the cloned MA 
NodeLoc = node location of the cloned agent 
 
migrate(SourceMA, NodeLoc) 
NodeLoc = target location of the MA | ALL neighbors 
 
sense(SourceMA, IdSensor, Params, BackEvent) 
IdSensor  = id of the sensor 
Params    = parameters for sensor readings 
BackEvent = notifying event containing the readings 
 
actuate(SourceMA, IdActuator, Params) 
IdActuator = id of the actuator 
Params     = parameters for actuator writings 
 
input(SourceMA, BackEvent) 
BackEvent  = event notifying the input captured from the 
switch 
 
flash(SourceMA, Params, BackEvent) 
Params     = flash memory access parameters 
BackEvent  = event notifying the completion of the flash 
memory operation (if it is a read operation, it contains 
the read data) 
 
setTimer(SourceMA, Params, BackEvent) 
Params     = timer parameters 
BackEvent  = event notifying the timer firing 
 
resetTimer(SourceMA, IdTimer) 
IdTimer    = id of the timer to reset 

Figure 6. The prototypal core primitives. 

 

4.2 A MAPS-based design of ASPINE 
In the following we describe the prototypical behaviors of the 
sensor node-side agents of ASPINE (see section 3) designed 
through MAPS. 

The behavior of the SensorManagerAgent consists of the state 
machine shown in Figure 7. It basically handles two events: 
SensingRequest and SensorAgentDiscovery. A SensingRequest 
can be admissible or not depending on the requested sensors: 
whether or not it is already in use (see action a1). In the former 
case, the SensorManagerAgent creates a SensorAgent with the 
sensing configuration parameters passed in the SensingRequest 
event (see action a2). A DiscoverySensorAgent event requests the 
identifier of the SensorAgent, if existing, attached to a given 
sensor type (see action a3). 

The behavior of the SensorAgent is described by the state 
machine depicted in Figure 8. In particular, the Sense event is 
driven by a timer set according to the sensing sampling rate (see 
action a0). When the Sense is received, the sense operation is 
issued (see action a1) and, after data acquisition, sensed data are 



buffered into the data acquisition buffer/s of the SensorAgent (see 
action a2). 

WaitForRequest

Sensi ngRequestProcessed

SensingRequest/a1

[!admissable]

[admissable]/a2

SensorAgentCreated

SensorAgentIDReturned

SensorAgentDisc
overy

/a3

 
a1: SensingRequest e = (SensingRequest)evt; 
    if (sensorAgents.get(e.getSensorType())==null) 
       admissable=true; 
    else admissable=false; 
a2: create(genAgentID(),“SensorAgent”, e.getConfParams(),  
           local); 
a3: SensorAgentType sensorType = (DiscoverySensorAgent)  
                               evt.getSensorAgentType(); 
AID sensorAgentID=sensorAgents.get(sensorType); 
    send(self(),(DiscoverySensorAgent)evt.getSource(), 
         ”AgentID”, <SAI=sensorAgentID>, true); 

Figure 7. The SensorManagerAgent behavior. 

 

Sensing/a0

Sense/a1

StopSensing

DataSensed

DataAcquisition/a2

 
a0: Sense timer =new Sense(self(), self(),  

                    Event.TMR_EXPIRED, Event.NOW); 
timerID = setTimer(self(), samplingTime, timer); 

a1: DataAcquisition dataEvt = new DataAcquisition(self(),  
                   self(), Event.SENSOR_TYPE, Event.NOW); 
    sense(dataEvt); 
a2: DataAcquisition e = (DataAcquisition)evt; 
    buffer(e.getData()); 

Figure 8. The SensorAgent behavior. 

 

The behavior of the ProcessingManagerAgent is described by the 
state machine depicted in Figure 9. When the 
ProcessingTaskActivationRequest arrives, the 
ProcessingManagerAgent interprets the request and, if the request 
is admissible, creates a ProcessingAgent and links it to its input 
and output agents (i.e. agents providing data input to and 
receiving data output from the created ProcessingAgent – see the 
example of Figure 4). 

The state machine of the behavior of the ProcessingAgent is 
reported in Figure 10. After initialization (see action a0), the 
ProcessingAgent is able to receive DataInput events from its input 

agents and process them (see action a1). After processing, the 
output is sent to the attached data output ProcessingAgents. 

WaitForRequest

RequestProcessed

ProcessingTaskActivationRequest/a1

[!admissable]

[admissable]/a2

P rocessingAgentCreated
 

a1: ProcessingTaskActivationRequest e =  
                   (ProcessingTaskActivationRequest)evt; 
    admissable=check(e.getRequest()); 
a2: String agentType=interpret(e.getRequest()); 
    AID agID = genAgentID(); 
    create(agID,agentType, e.getConfParams(), local); 
    link(agID); 

Figure 9. The ProcessingManagerAgent behavior. 

 

Processi ng
/a0

DataInput/a1

StopProcessing

 
a0: initProcessing(); 
a1: DataInput e = (DataInput)evt; 
    process(e.getData()); 

Figure 10. The ProcessingAgent behavior. 

 

The basic behavior of the CommunicationManagerAgent is 
described by the state machine depicted in Figure 11. The 
ProtocolRequest event encapsulates the packet of the interaction 
protocol with the CommunicatorAgent at the base-station; once 
the event is received the CommunicationManagerAgent processes 
it according to the protocol (see action a1) or routes it to the target 
manager agent, if it is not able to handle it. A ProtocolRequest 
involving data transmission from the node to the base station or to 
another node can also be requested by a SenderAgent. 

WaitForRequest

RequestProcessed

ProtocolRequest/a1

 
a1: ProtocolRequest e=(ProtocolRequest)evt; 
    process(e.getRequestType()); 

Figure 11. The CommunicationManagerAgent behavior. 



5. CONCLUSION 
In this paper we have presented ASPINE, an agent-based design 
of the SPINE framework. We strongly believe that the agent-
oriented paradigm can simplify the redesign of SPINE to make it 
more flexible and effective. Moreover, with respect to the current 
version 1.2 of SPINE which relies on a star-based topology 
network, ASPINE is designed to be exploited on more general 
WSN topologies as agent on the sensor nodes can interact not 
only with agents at the base station but also among them in 
single-hop and multi-hop scenarios. 

Current efforts are geared at implementing ASPINE through 
MAPS, an agent framework for Java SunSpot-based wireless 
sensor platforms so as to provide a full-fledged Java 
implementation of ASPINE at node side. Moreover, Jade and Jade 
Leap [3] have been considered as frameworks to be used 
respectively on PC and PDA-based gateways to implement 
ASPINE at the coordinator node. 

Finally, the human activity monitoring application developed in 
[6], which allows recognizing postures (sitting, lying, standing) 
and movements (walking and falling) of individuals, is being 
reverse engineered to encompass sensor nodes based on ASPINE. 
This will offer an interesting experimentation testbed for 
ASPINE. 
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