
ASPINE: An Agent-oriented Design of SPINE
Fabio Luigi Bellifemine

TILAB - Telecom Italia
Via G. Reiss Romoli, 274

(10148) Torino, Italy
+39.011.228 6175

fabioluigi.bellifemine@telecomitalia.it

Giancarlo Fortino
DEIS – University of Calabria

Via P. Bucci, cubo 41C
87036 Rende(CS), Italy

+39.0984.494063

g.fortino@unical.it

ABSTRACT
Wireless sensor networks (WSNs) are emerging as powerful
platforms for distributed embedding computing. Currently,
flexible frameworks and middlewares are emerging to facilitate
WSN application development which is usually very application-
specific and involves the programming of low-level mechanisms
for enabling sensing, communication and energy saving. SPINE is
a domain-specific framework for distributed processing of sensed
data which is currently being applied to the rapid prototyping of
body sensor networks applications for human body activity
recognition. In this paper we present ASPINE, an agent-oriented
design of the SPINE framework. According to the agent-
paradigm, each base station-side and sensor node-side component
of SPINE (coordinator, sensor manager, function manager,
communication manager) is designed as a software interacting
agent with specific capabilities. The set of agents of a node
constitute a local multi-agent system (MAS) which carries out a
local goal (e.g. sensing and feature extraction on sensed data)
whereas a set of cooperating nodes represents a distributed MAS
pursuing a global goal (e.g. classification of human body
postures). Finally, we also describe the design of an
implementation of ASPINE based on MAPS, an agent platform
for Java SunSPOTs.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems;
D.2.11 [Software Engineering]: Software Architectures

General Terms
Design, Language

Keywords
Wireless sensor networks, SPINE, agent programming paradigm.

1. INTRODUCTION
Due to recent advances in electronics and communication
technologies, Wireless Sensor Networks (WSNs) have been
introduced and are currently emerging as one of the most
disruptive technologies enabling and supporting next generation
ubiquitous and pervasive computing scenarios [10]. WSNs have a
high potential to support a variety of high-impact applications
such as disaster/crime prevention and military applications,
environmental applications, health care applications, and smart
spaces.

When applied to the human body, WSNs are usually called
Wireless Body Sensor Networks (WBSNs) [14]. This area is
particularly dense of interest because real-world applications of

WBSNs aim to improve the quality of life by enabling at low cost
continuous and real-time non-invasive medical assistance. Health-
care applications where WBSNs could be greatly useful include
early detection or prevention of diseases, elderly assistance at
home, e-fitness, rehabilitation after surgeries, motion and gestures
detection, cognitive and emotional recognition, medical assistance
in disaster events, etc.

However, programming WBSN applications is a complex task not
only because of the intrinsic complexity of the problems but also
due to the hard constraints of the wearable devices and to the lack
of proper and effective software abstractions. To deal with this
issue, domain-specific frameworks could be developed and
effectively adopted. In particular, The SPINE Open Source
project [11] aims to build a framework useful to decrease
development time and improve interoperability among signal
processing intensive applications based on WBSNs. The SPINE
framework provides libraries of protocols, utilities and processing
functions, and a lightweight Java API that can be used by local
and remote applications to manage the sensor nodes or issue
service requests. By providing these abstractions and libraries,
that are common to most signal processing algorithms used in
WBSNs for sensor data analysis and classification, SPINE also
provides flexibility in the allocation of tasks among the WBSN
nodes and allows the exploitation of implementation tradeoffs.
Currently SPINE is implemented for several sensor platforms
based on TinyOS [13] and Z-Stack [15] by using the
programming paradigms offered by such platforms (event and
component-based programming in TinyOS and C programming in
Z-Stack) and is being effectively applied to the development of
applications in the health care domain [7].

However we believe that the exploitation of the agent-oriented
programming paradigm to develop WBSN applications could
provide more effectiveness as demonstrated by the application of
agent technology in several key application domains [3, 9]. As a
consequence, in this paper, we propose an agent-oriented design
of SPINE, named ASPINE, which extends the functionalities
provided by SPINE and allows for a more rapid development of
signal processing intensive WBSN applications in terms of agent-
based systems.

The rest of this paper is organized as follow. Section 2 provides
an overview of the SPINE software architectures and, in
particular, describes its base station-side and sensor node-side
components. Section 3 introduces the design of ASPINE, which is
exemplified through a simple yet effective in-node signal
processing task. Section 4 presents an initial design of ASPINE
on MAPS, an agent platform for Java Sun Spots. Finally
conclusions are drawn and on-going research anticipated.

2. AN OVERVIEW OF SPINE (SIGNAL
PROCESSING IN-NODE ENVIRONMENT)
SPINE [6] is a framework for distributed signal processing in
Wireless Body Sensor Networks (WBSN) based on the following
principles:
- Open Source. SPINE is developed as an Open Source project

to establish a broad community of users and developers that
contribute to extend the framework with new capabilities and
applications (http://spine.tilab.com).

- Interoperability through high-level APIs. SPINE provides
local and remote applications with lightweight Java APIs that
can be used by local and remote applications to manage the
sensor nodes or send service requests, and are easily portable
to devices of various capabilities, such as PCs or mobile
phones, that can be used as WBSN coordinator.

- High-level abstractions. SPINE provides libraries of
protocols, utilities and processing functions; hence, it
simplifies the task of application developers by raising the
level of abstraction. The layer defined by the SPINE libraries
allows designers to focus on application-specific issues and
program at a higher level of abstraction than TinyOS.

- Distributed implementations of classification algorithms.
SPINE simplifies the development of applications that
require complex signal processing algorithms and classifiers.
For example SPINE supports distributed implementation of
classification algorithms (at the base station and at the sensor
nodes) to reduce the amount of data to be transmitted and
save energy.

Currently the SPINE architecture centers on a star topology
including one or more sensor nodes and a base station (or WBSN
coordinator node). The coordinator typically manages the WBSN,
collects and analyzes the data received from the sensor nodes, and
acts as a gateway to connect the WBSN with wide area networks
for remote data access.

In particular, SPINE has two main software components: one at
the sensor node and the other one at the WBSN coordinator. In
the following a description of the version 1.2 of SPINE developed
for TinyOS is briefly presented.

The sensor node component, designed for TinyOS environment
and written in nesC language [5], includes several utilities for
signal processing such as data storage buffers, mathematical
function libraries and common feature extractors used in signal
processing. The SPINE framework has been structured to be
platform independent and may work with different platforms
running TinyOS 2.x. In this way commercial boards (such as
TelosB and MicaZ) as well as proprietary ones may use SPINE
functionalities, once interfaces with the sensors are implemented.

The coordinator component consists of a Java-based interface that
an application running on the base station itself or on a remote
server can use to manage the sensor nodes or issue service
requests. SPINE provides a lightweight Java API that is easily
portable to devices of various capabilities that can be used as
gateway, such as a PC or a mobile phone.

The main functional components of the software architecture of
the current version 1.2 of SPINE are reported in Figure 1.

On the coordinator, User Applications manage a SPINE network
through a lightweight and well-defined API. The surface level of
SPINE lets registered applications be notified of high-level events
generated by the WBSN under-control, such as discovery of new
nodes, sensor data transmission, node alarms and system
messages (e.g. low battery warnings). Commands issued by the
user application and network generated events are respectively
coded in lower-level SPINE messages and decoded in higher-
level information by the SPINE Host Communication Manager
which takes care of packets generation and retrieval and interfaces
with the specific software components of the host platform to
access the physical radio module to transmit/receive packets
to/from the WBSN.

On the node side, the SPINE framework is responsible of
providing developers abstractions of hardware resources such as
sensors and the radio, a default set of ready-to-use common signal
processing functions and, most important, a flexible and modular
architecture to customize and extend the framework itself to
support new physical platforms and sensors and introduce new
signal processing services. In particular, the SPINE Node
Communication Manager acts as the counterpart of the host
communication manager; in addition, it possibly takes into
account management policies to optimize e.g. energy
consumption by an intelligent use of the radio module. The
SPINE Sensors Controller manages and abstracts the sensors on
the node platform, providing a standard interface to the diverse
sensor drivers. It is responsible of sampling the sensors and
storing the sensor readings in proper data buffers. The SPINE
Node Manager is the central component, responsible of
recognizing the remote requests and dispatching them to the
proper components. Finally, the SPINE Processing Manager
consists of a dispatcher for the actual processing services and a
standard interface for user-defined services integration.

SPINE API
(commands & events)

SPINE Coordinator
Side

User Application

Host platform

SPINE Host
Communication Manager

SPINE Processing Manager

SPINE Node Manager

SPINE Node
Comm. Manager

SPINE Sensors
Controller

b
u
f
f
e
r
s

SPINE Node Side

Node platform

Figure 1. The software architecture of SPINE 1.2.

3. AN AGENT-ORIENTED DESIGN OF
SPINE: ASPINE
The SPINE architecture overviewed in section 2 was designed by
using an agent-based approach. The so obtained agent-oriented
design of SPINE (or ASPINE) adheres to the organization of the
SPINE architecture so consisting of base station-side and sensor-
node-side agents.

Communication
Manager

Agent

Sensor
Manager

Agent

Processing
Manager

Agent

Se nsor node-side

Communicator
Agent

Coordinator
Agent

Base s tation-side

Application
Agents

Sensor
Agents

Processing
Agents

Communication
Agents

Figure 2. The ASPINE architecture.

Figure 2 shows the architecture of ASPINE through a class
diagram. In particular, the following core agents are defined:
Base station-side
- The CoordinatorAgent is responsible for managing the set of

nodes of the sensor network under control. Management
involves configuring and monitoring nodes;

- The ApplicationAgents are agents implementing application-
specific or domain-specific logics;

- The CommunicatorAgent allows the CoordinatorAgent and
the ApplicationAgents to interact with the sensor nodes
through an efficient over-the-air application-level protocol.

Sensor node-side
- The SensorManagerAgent manages the sensor/actuator

resources of the node through specific SensorAgents able to
interact with specific sensors (temperature, light,
accelerometer, etc).

- The CommunicationManagerAgent manages the
communication with the CommunicatorAgent and among the
CommunicationManagerAgents, located at different sensor
nodes, by means of specific CommunicationAgents.

- The ProcessingManagerAgent supports one or more local
processing tasks or parts of global processing tasks through
ProcessingAgents. They are able to perform computation on
sensed data (e.g. feature extraction) and data aggregation.

3.1 In node signal processing task based on
ASPINE: an example
An example of in-node signal processing task is portrayed in
Figure 3 by means of a data-flow model based on subtasks. In
particular, the sensed data periodically produced by the sensing
subtask acting on a 3-axial accelerometer are split for the
computation of the features Mean on all three axes (XYZ), and
Min and Max on axis X. Each triple of computed features
(<Mean(AccXYZ), Min(AccX), Max(AccX)>) are aggregated by
the aggregation subtask (Aggr) and sent to the coordinator node
by the data transmission subtask (Sender) as soon as aggregated
data are available.

Acceleromet er
Sensing Split

Mean

Min

Max

Acc (XYZ)

Acc (XYZ)

Acc (XYZ)

Aggr Sender

<Max(AccX),
Min(AccX),

Mean(AccXYZ)>

Figure 3. Data-flow-based model of an in-node signal

processing task.
The ASPINE design of the model of Figure 3 is shown in Figure
4.

AccelerometerAgent
-chX:double[];
-chY:double[];
-chZ:double[];
- samplingRate:do uble;

+setSOnCh(AID, Channel, S:in t):void

MeanAgent
meanChX:double
meanChY:double
meanChZ:double

-mean(do uble[]):doub le

MinAgent
minChX:double
-min(double[]):do uble

MaxAgent
maxCh X:double
-max(d ouble[]):dou ble

AggregatorAgent
aggrData:d ouble[]

-aggregatio n():void

SenderAgent
data:d ouble[]

Figure 4. ASPINE-base design of the example in-node signal

processing task.

The AccelerometerAgent interacts with the accelerometer sensor
and, according to the set sampling rate (samplingRate), acquires
one sample per channel (X, Y, Z) and stores them into the
corresponding buffers chX, chY, chZ. Once S samples are
acquired the AccelerometerAgent passes them to the MinAgent,
MaxAgent and MeanAgent. These relationships are created

through the method setSOnCh(AID, Channel, S), where AID is
the agent identifier, Channel refers to the channels to be
considered, and S is the number of samples. In this case, all
agents are based on the same S but on different channels. In
particular, MinAgent, MaxAgent and MeanAgent receive the last
acquired S samples respectively from the chX buffer, from the
chX buffer, and from the chX, chY, and chZ buffers. Upon
reception of such data, the agents compute their respective
functions and pass the results to the AggregatorAgent. This waits
for the aggregation of the data triple aggrData=<minChX,
maxChX, <meanChX, meanChY, meanChZ>> and passes it to
the SenderAgent, a specific CommunicationAgent, which, in
turns, transmits it to the CommunicatorAgent located at the base
station.

4. TOWARDS AN ASPINE
IMPLEMENTATION BASED ON MAPS
In this section we describe a design of ASPINE through the
MAPS framework [1] which provides a real basis for its full-
fledged Java implementation.

4.1 An overview of MAPS
MAPS (Mobile Agent Platform for Sun SPOTs) is an innovative
Java-based framework for wireless sensor networks based on Sun
SPOT technology [12] which enables agent-oriented
programming of WSN applications.

MAPS has been appositely defined for resource-constrained
sensor nodes; in particular the requirements on which it is based
are the following:

(i) Component-based lightweight agent server architecture. This
implies the avoidance of heavy concurrency models and,
therefore, the exploitation of cooperative concurrency or single-
threading to run agents.

(ii) Lightweight agent architecture to efficiently execute and
migrate agents.

(iii) Minimal core services. The main core services are: agent
migration, sensing capability access, agent naming, agent
communication, and timing. The agent migration service allows
an agent to be moved from one sensor node to another by
retaining code, data and execution state. The sensing capability
access service allows agents to access to the sensing capabilities
of the sensor node, and, more generally, to its resources
(actuators, input signalers, flash memory). The agent naming
service provides a region-based namespace for agent identifiers
and agent locations. The agent communication service which
allows local and remote one-hop message-based communications
among agents. The timing service allows agents to set timers for
timing their actions.

(iv) Plug-in-based architecture extensions. Any other service
must be defined in terms of one or more dynamically installable
components (or plug-ins) implemented as single mobile agent or
cooperating mobile agents.

(v) Java as programming language for agents.

The architecture of MAPS is reported in Figure 5. In particular:

- The mobile agent execution engine (MAEE) is the
component which supports the execution of agents by means
of an event-based scheduler enabling cooperative
concurrency. The MAEE handles each event emitted by or to
be delivered at the mobile agent (MA) through decoupling
event queues. The MAEE interacts with the other core
components to fulfill service requests (message transmission,
sensor reading, timer setting, etc) issued by the MAs.

- The mobile agent migration manager (MAMM) supports the
migration of agents from one sensor node to another. In
particular, the MAMM is able to: (i) serialize an MA into a
message and send it to the target sensor node; (ii) receive a
message containing a serialized MA, deserialize and activate
it. The agent serialization format includes code, data and
execution state.

- The mobile agent communication channel (MACC) enables
inter-agent communications based on asynchronous
messages. Messages can be unicast, multicast or broadcast.

- The mobile agent naming (MAN) provides agent naming
based on proxies to support the MAMM and MACC
components in their operations. The MAN also manages the
(dynamic) list of the neighbor sensor nodes.

- The timer manager provides the timer service which allows
for the management of timers to be used for timing MA
operations.

- The resource manager (RM) provides access to the sensor
node resources: sensors/actuators, battery, and flash memory.

MAEE

MA

MAMM

RM TM MACC

VM/OS

MAN

MA - Mobile Agent
MAEE - Mobile Agent Execution Engine
MAMM - Mobile Agent Migration Manager
MACC - Mobile Agent Communication Channel
MAN - Mobile Agent Naming
RM - Resource Manager
TM - Timer Manager

Events

Figure 5. The MAPS architecture.

4.1.1 Programming abstractions of MAPS
The main programming abstractions of MAPS are Agents and
Events. While events formalize interaction among components
and agents, agents are the active entities whose behavior is
modeled as a multi-plane state machine (MPSM). Thus MPSM-
based agent behavior programming allows exploiting the benefits

deriving from three paradigms for WSN programming: event-
driven programming [5], state-based programming [8] and mobile
agent-based programming [4, 2].

The communication among agents, between agents and system
components, and, sometimes, among components are based on
Event objects. An Event object is composed of:
- sourceID, which is the agent/component identifier of the

event source;
- targetID, which is the agent/component identifier of the

event target;
- typeName, which represents the name of the event types

which are grouped according to their specific function;
- params, which include the event data organized as a chain of

pairs <key, value>;
- durationType, which specifies the event duration. It can

assume the following three values:
o NOW, for instantaneous events;
o FIRST_OCCURRENCE, for events which wait for a

specific value to occur;
o PERMANENT. In this case, the event is sent every time

that values set in the event parameters are reached.

The agent behavior consists of:
- Global variables (GV) which represent the data of the MA

including the MA identity.
- Global functions (GF) which consist of a set of supporting

functions which can access GV but cannot invoke neither
core primitives nor other functions.

- Multi-plane State Machine (MPSM) which consists of a set
of planes. Each plane may represent the behavior of the MA
in a specific role. In particular a plane is composed of:
o Local variables (LV) which represent the local data of a

plane.
o Local functions (LF) which consist of a set of local plane

supporting functions which can access LV but cannot
invoke neither core primitives nor other functions.

o ECA-based Automata (ECAA) which represents the
dynamic behavior of the MA in that plane and is
composed of states and mutually exclusive transitions
among states. Transitions are labeled by ECA rules:
E[C]/A, where E is the event name, [C] is a boolean
expression based on the GV and LV variables, and A is
the atomic action. A transition t is triggered if t originates
from the current state (i.e. the state in which the ECAA
is), the event with the event name E occurs and [C] holds.
When the transition fires, A is first executed and, then, the
state transition takes place. In particular, the atomic action
can use GV, GF, LV, and LF for performing
computations, and, particularly, invoking the core
primitives (Figure 6; see [1] for more details) to
asynchronously emit one or more events. The delivery of
an event is asynchronous and can occur only when the
ECAA is idle, i.e. the handling of the last delivered event
(ED) is completed.

- Event dispatcher (ED) which dispatches the event delivered
by the MAEE to one or more planes according to the events
the planes are able to handle. In particular, if an event must

be dispatched to more than one plane, the event dispatching
is appositely serialized.

send(SourceMA, TargetMA, EventName, Params, Local)
SourceMA = id of the invoking MA
TargetMA = id of the MA target |
 id of the Group target |
 ALL for event broadcast to neighbors
EventName = name of the event to be sent
Params = set of event parameters encoded
 as pairs <attribute, value>
Local = local (true) or remote (false) scoped event

create(SourceMA, MAId, MAType, Params, NodeLoc)
MAId = id of the MA to be created
MAType = type of the MA to be created
Params = agent creation parameters
NodeLoc = node location of the created agent

clone(SourceMA, MAId, NodeLoc)
MAId = id of the cloned MA
NodeLoc = node location of the cloned agent

migrate(SourceMA, NodeLoc)
NodeLoc = target location of the MA | ALL neighbors

sense(SourceMA, IdSensor, Params, BackEvent)
IdSensor = id of the sensor
Params = parameters for sensor readings
BackEvent = notifying event containing the readings

actuate(SourceMA, IdActuator, Params)
IdActuator = id of the actuator
Params = parameters for actuator writings

input(SourceMA, BackEvent)
BackEvent = event notifying the input captured from the
switch

flash(SourceMA, Params, BackEvent)
Params = flash memory access parameters
BackEvent = event notifying the completion of the flash
memory operation (if it is a read operation, it contains
the read data)

setTimer(SourceMA, Params, BackEvent)
Params = timer parameters
BackEvent = event notifying the timer firing

resetTimer(SourceMA, IdTimer)
IdTimer = id of the timer to reset

Figure 6. The prototypal core primitives.

4.2 A MAPS-based design of ASPINE
In the following we describe the prototypical behaviors of the
sensor node-side agents of ASPINE (see section 3) designed
through MAPS.

The behavior of the SensorManagerAgent consists of the state
machine shown in Figure 7. It basically handles two events:
SensingRequest and SensorAgentDiscovery. A SensingRequest
can be admissible or not depending on the requested sensors:
whether or not it is already in use (see action a1). In the former
case, the SensorManagerAgent creates a SensorAgent with the
sensing configuration parameters passed in the SensingRequest
event (see action a2). A DiscoverySensorAgent event requests the
identifier of the SensorAgent, if existing, attached to a given
sensor type (see action a3).

The behavior of the SensorAgent is described by the state
machine depicted in Figure 8. In particular, the Sense event is
driven by a timer set according to the sensing sampling rate (see
action a0). When the Sense is received, the sense operation is
issued (see action a1) and, after data acquisition, sensed data are

buffered into the data acquisition buffer/s of the SensorAgent (see
action a2).

WaitForRequest

Sensi ngRequestProcessed

SensingRequest/a1

[!admissable]

[admissable]/a2

SensorAgentCreated

SensorAgentIDReturned

SensorAgentDisc
overy

/a3

a1: SensingRequest e = (SensingRequest)evt;
 if (sensorAgents.get(e.getSensorType())==null)
 admissable=true;
 else admissable=false;
a2: create(genAgentID(),“SensorAgent”, e.getConfParams(),
 local);
a3: SensorAgentType sensorType = (DiscoverySensorAgent)
 evt.getSensorAgentType();
AID sensorAgentID=sensorAgents.get(sensorType);
 send(self(),(DiscoverySensorAgent)evt.getSource(),
 ”AgentID”, <SAI=sensorAgentID>, true);

Figure 7. The SensorManagerAgent behavior.

Sensing/a0

Sense/a1

StopSensing

DataSensed

DataAcquisition/a2

a0: Sense timer =new Sense(self(), self(),

 Event.TMR_EXPIRED, Event.NOW);
timerID = setTimer(self(), samplingTime, timer);

a1: DataAcquisition dataEvt = new DataAcquisition(self(),
 self(), Event.SENSOR_TYPE, Event.NOW);
 sense(dataEvt);
a2: DataAcquisition e = (DataAcquisition)evt;
 buffer(e.getData());

Figure 8. The SensorAgent behavior.

The behavior of the ProcessingManagerAgent is described by the
state machine depicted in Figure 9. When the
ProcessingTaskActivationRequest arrives, the
ProcessingManagerAgent interprets the request and, if the request
is admissible, creates a ProcessingAgent and links it to its input
and output agents (i.e. agents providing data input to and
receiving data output from the created ProcessingAgent – see the
example of Figure 4).

The state machine of the behavior of the ProcessingAgent is
reported in Figure 10. After initialization (see action a0), the
ProcessingAgent is able to receive DataInput events from its input

agents and process them (see action a1). After processing, the
output is sent to the attached data output ProcessingAgents.

WaitForRequest

RequestProcessed

ProcessingTaskActivationRequest/a1

[!admissable]

[admissable]/a2

P rocessingAgentCreated

a1: ProcessingTaskActivationRequest e =
 (ProcessingTaskActivationRequest)evt;
 admissable=check(e.getRequest());
a2: String agentType=interpret(e.getRequest());
 AID agID = genAgentID();
 create(agID,agentType, e.getConfParams(), local);
 link(agID);

Figure 9. The ProcessingManagerAgent behavior.

Processi ng
/a0

DataInput/a1

StopProcessing

a0: initProcessing();
a1: DataInput e = (DataInput)evt;
 process(e.getData());

Figure 10. The ProcessingAgent behavior.

The basic behavior of the CommunicationManagerAgent is
described by the state machine depicted in Figure 11. The
ProtocolRequest event encapsulates the packet of the interaction
protocol with the CommunicatorAgent at the base-station; once
the event is received the CommunicationManagerAgent processes
it according to the protocol (see action a1) or routes it to the target
manager agent, if it is not able to handle it. A ProtocolRequest
involving data transmission from the node to the base station or to
another node can also be requested by a SenderAgent.

WaitForRequest

RequestProcessed

ProtocolRequest/a1

a1: ProtocolRequest e=(ProtocolRequest)evt;
 process(e.getRequestType());

Figure 11. The CommunicationManagerAgent behavior.

5. CONCLUSION
In this paper we have presented ASPINE, an agent-based design
of the SPINE framework. We strongly believe that the agent-
oriented paradigm can simplify the redesign of SPINE to make it
more flexible and effective. Moreover, with respect to the current
version 1.2 of SPINE which relies on a star-based topology
network, ASPINE is designed to be exploited on more general
WSN topologies as agent on the sensor nodes can interact not
only with agents at the base station but also among them in
single-hop and multi-hop scenarios.

Current efforts are geared at implementing ASPINE through
MAPS, an agent framework for Java SunSpot-based wireless
sensor platforms so as to provide a full-fledged Java
implementation of ASPINE at node side. Moreover, Jade and Jade
Leap [3] have been considered as frameworks to be used
respectively on PC and PDA-based gateways to implement
ASPINE at the coordinator node.

Finally, the human activity monitoring application developed in
[6], which allows recognizing postures (sitting, lying, standing)
and movements (walking and falling) of individuals, is being
reverse engineered to encompass sensor nodes based on ASPINE.
This will offer an interesting experimentation testbed for
ASPINE.

6. ACKNOWLEDGMENTS
Authors wish to thank the SPINE and MAPS research teams
(particularly Roberta Di Giannantonio, Marco Sgroi, Antonio
Guerrieri, Raffaele Gravina, Francesco Aiello, Alessio Carbone,
Stefano Galzarano) for their precious contributions to ASPINE in
terms of ideas, discussions and on-going implementation efforts.
The SPINE project is partially funded by Telecom Italia.

7. REFERENCES
[1] F. Aiello, G. Fortino, R. Gravina, A. Guerrieri, “MAPS: a
Mobile Agent Platform for Java Sun SPOTs,” In Proceedings of
the 3rd International Workshop on Agent Technology for Sensor
Networks (ATSN-09), jointly held with the 8th International Joint
Conference on Autonomous Agents and Multiagent Systems
(AAMAS-09), 12th May, Budapest, Hungary, 2009.
[2] F. Aiello, G. Fortino, A. Guerrieri, “Using mobile agents as an
effective technology for wireless sensor networks,” In Proc. of the
Second IEEE/IARIA International Conference on Sensor
Technologies and Applications (SENSORCOMM 2008), Aug 25-
31, Cap Esterel, France, 2008.
[3] F.L. Bellifemine, G. Caire, D. Greenwood, “Developing
Multi-Agent Systems with JADE,” Wiley, 2007.

[4] C-L Fok, G-C Roman, C Lu, “Rapid Development and
Flexible Deployment of Adaptive Wireless Sensor Network
Applications,” In Proc. of the 24th Int’l Conference on
Distributed Computing Systems (ICDCS'05), Columbus, Ohio,
June 6-10, 2005, pp. 653-662.
[5] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E.,
and Culler, D. 2003. The nesC language: A holistic approach to
networked embedded systems. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design
and Implementation (San Diego, California, USA, June 09 - 11,
2003). PLDI '03. ACM, New York, NY, 1-11.
[6] R. Gravina, A. Guerrieri, G. Fortino, F. Bellifemine, R.
Giannantonio, M. Sgroi, “Development of body sensor network
applications using SPINE,” In Proc. of. IEEE International
Conference on Systems, Man, and Cybernetics (SMC 2008),
Singapore, Oct. 12-15, 2008.
[7] S. Iyengar, F. Tempia Bonda, R. Gravina, A. Guerrieri, G.
Fortino, A. Sangiovanni-Vincentelli, “A Framework for Creating
Healthcare Monitoring Applications Using Wireless Body Sensor
Networks”, In the Proc. of the 3rd International Conference on
Body Area Networks (BodyNets’08), Tempe (AZ), USA, Mar.
13-15, 2008.
[8] O. Kasten, K. Römer, “Beyond event handlers: programming
wireless sensors with attributed state machines,” In Proc. of the
4th Int’l symposium on Information processing in sensor
networks, April 24-27, 2005, Los Angeles, CA.
[9] M. Luck, P. McBurney, C. Preist, “A Manifesto for Agent
Technology: Towards Next Generation Computing,” Autonomous
Agents and Multi-Agent Systems 9(3), pp. 203-252, 2004.
[10] K. Sohraby, D. Minoli, T. Znati, “Wireless Sensor Networks:
technology, protocols, and applications”, Wiley, 2007.
[11] SPINE (Signal Processing In-Node Environment),
documentation and software, http://spine.tilab.com (2009)
[12] Sun Spots, documentation and software,
http://www.sunspotworld.com/ (2009)
[13] TinyOS, documentation and software, http://www.tinyos.net
(2009).
[14] Guang-Zhong Yang, “Body Sensor Networks”, Springer,
2006.
[15] Z-Stack (ZigBee Protocol Stack), Texas Instruments,
documentation and software,
http://focus.ti.com/docs/toolsw/folders/print/z-stack.html (2009)

