
Modeling Organizations and Roles Using A Middleware
Jade-Based

Matteo Baldoni
Dipartimento di Informatica

Università di Torino
Italy

+390116706711

baldoni@di.unito.it

Guido Boella
Dipartimento di Informatica

Università di Torino
Italy

+390116706711

guido@di.unito.it

Roberto Grenna
Dipartimento di Informatica

Università di Torino
Italy

+390116706711

grenna@di.unito.it

ABSTRACT
Organizations and roles are often seen as mental constructs,

good to be used during the design phase in Multi Agent Systems,
but they have also been considered as first class citizens in MAS,
when objective coordination is needed. Roles facilitate the
coordination of agents inside an organization, and they give new
abilities in the context of organizations, called powers, to the
agents which satisfy the requirements necessary to play them. No
general purpose programming languages for multiagent systems
offer primitives to program organizations and roles as instances
existing at runtime, so, in this paper, we propose our extension
of the Jade framework, with primitives to program in Java
organizations structured in roles, and to enable agents to play
roles in organizations.We provide classes and protocols which
enable an agent to enact a new role in an organization, to interact
with the role by invoking the execution of powers, and to receive
new goals to be fulfilled. Since roles and organizations can be on
a different platform with respect to the role players, the
communication with them happens via protocols. Since they can
have complex behaviours, they are implemented by extending the
Jade agent class. Our aim is to give to programmers a middle
tier, built on the Jade platform, useful to solve with minimal
implementative effort many coordination problems, and to offer a
first, implicit, management of norms and sanctions.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control
structures.

General Terms
Languages.

Keywords
Jade, powerJava, roles, organizations, powerJade.

1. INTRODUCTION
Roles facilitate the coordination of agents inside an

organization, giving new abilities in the context of organizations,
called powers, to the agents which satisfy the requirements
necessary to play them. Organizations and roles are often seen as
mental constructs, good to be used during the design phase in
MAS, but they have also been considered as first class citizens in

multiagent systems [8], when objective coordination is needed.
No general purpose programming languages for multiagent
systems offer primitives to program organizations and roles as
instances existing at runtime, yet.

So, this paper answers the following research questions:

 How to introduce organizations and roles in a general
purpose framework for programming multiagent
systems?

 Which are the primitives to be added for programming
organizations and roles?

 How it is possible to restructure roles during runtime?

Another subquestion could be the following: what does it
bring to program roles and organisations as instances?

As methodology, we build our proposal as an extension of
the Jade multiagent system framework, with primitives to
program, in Java, organizations structured in roles, for enabling
agents to play roles in organizations. As ontological model of
organizations and roles we select [6] which merges two different
and complementary views or roles, providing an high level
logical specification.

To pass from the logical specification to the design and
implementation of a framework for programming multiagent
systems, we provide classes and protocols which enable an agent
to enact a new role in an organization, to interact with the role by
invoking the execution of powers (as intended, in OO
programming, in [7], and shortly explained in Section 2.4), and
to receive new goals to be fulfilled. Since roles and organizations
can be on a different platform with respect to the role players, the
communication with them happens via protocols. Since they can
have complex behaviours, they are implemented by extending the
Jade agent class. Our aim is to give to programmers a middle
tier, built on the Jade platform, useful to solve with minimal
implementative effort coordination problems.

We test our proposal on a possible scenario, highlighting the
features of our model. In this paper we do not consider the
possibility to have BDI agents, even if both the ontological model
(see [7]) and the Jade framework allow such extension. The
paper is organized as follows. First, in Section 2, we summarize
the model of organizations and roles we take inspiration from,
and we give a short description of our concept of “power”. In

Section 3, we describe an example of a typical MAS situation in
the real life; in Section 4 we describe how our model is realized
introducing new packages in Jade; in Section 5 we discuss a
possible powerJade solution to a practical problem (the manager-
bidder one), and Section 6 will finsh this paper with related work
and conclusions.

2. THE MODEL OF ORGANIZATION AND
ROLES

Since we speak about organizations and roles, we need to
refer to a formalized ontological model, in order to avoid ad hoc
solutions imposed by the Jade framework, and to make
understandable to programmers how to use the primitives. In the
following subsections we shortly show two different (but
complementary) views about roles (see [7] and [9]), and we
introduce a unified model starting from these, and define a well-
founded metamodel. Then, we explain our concept of “power”.

2.1 The Ontological Model for the
Organization

In [7] an ontological analysis shows the following properties
for roles:

 Foundation: a role instance has always to be associated
to an instance of the organization to which it belongs,
and to an instance of the player of the role too;

 Definitional dependence: the role definition depends
from the one of the organization to which it belongs;

 Institutional powers: the operations defined into the
role can access the state of the organization, and of the
other roles of the organization too;

 Prerequisites: to play a role, it is necessary to satisfy
some requisites, that means that the player has to be
able to do actions which can be used in the role’s
operations execution.

Also the model of [7] is focused on the definition of the structure
of organizations, given their ontological status, which is only
partly different from the one of agents or objects. On the one
hand, roles do not exist as independent entities, since they are
linked to organizations. Thus, they are not components like
objects. Moreover, organizations and roles are not autonomous
and act via role players. On the other hand, organizations and
roles are description of complex behaviours: in the real world,
organizations are considered legal entities, so they can even act
like agents, albeit via their representative playing roles. So, they
share some properties with agents, and, in some respects, can be
modelled using similar primitives.

2.2 The Model for the Role Dynamics
[9]’s model focus on role dynamics, rather than on their

structure; four operations to deal with role dynamics are defined:
enact and deact, which mean that an agent starts and finishes to
occupy (play) a role in a system, and activate and deactivate,
which means respectively that an agent starts executing actions
(operations) belonging to the role and suspends their execution.

Although it is possible to have an agent with multiple roles
enacted simultaneously, only one role can be active at the same
time: when an agent performs a power, he is playing only one
role in that moment.

2.3 The Unified Model
Using the distinction of Omicini [19], we use the model

presented in [7] as an objective coordination mechanism, in a
similar way, for example, artifacts do: organizations are first
class entities of the MAS rather than a mental construction which
agents use to coordinate themselves. However, this model leaves
unspecified how, given a role, its player will behave. So, we
merge it with [9]’s model, to solve the problem of formally
defining the dynamics of roles, by identifying the actions that can
be done in a open system, such that agents can enter and leave.
Organizations are not simple mental constructions, roles are not
only abstractions used at design time, and players are not isolated
agents: they are all agents interacting the one with the others. A
logical specification of this integrated model can be found in [6].

2.4 “Powers” in our view
We knows that roles work as “interfaces” between

organizations and agents, and they give so called “powers” to
agents. A power can extend agents abilities, allowing them to
operate inside the organization and inside the state of other roles.
An example of such powers, called “institutional powers” in
[17], is the signature of a director which counts as the
commitment of the entire institution. The powers added to the
players, by mean of the roles, can be different for each role and,
thus, represent different affordances offered by the organization
to other agents to interact with it [4]. Powers are invoked by
players on their roles, but they are executed by the roles, since
they own both state and behaviour.

3. An example of MAS in real life
We will start with a real-life example, in order to explain a

common situation that could be modeled with a Multi Agent
System application. The scenario we want to consider involves
two organizations: a bank, and a software house. Bob has been
engaged as a programmer in a software house. The software
house management imposes to him the owning of a bank account,
in order to directly deposit his salary on it. Bob goes to the bank,
where the employee, George, gives him some templates to fill.
Once that Bob finished compiling the modules, George inputs the
data on the terminal, creating the new account, which needs to be
activated. George forwards the activation request to his director,
Bill, who is the only able to activate an account in all the bank.
Once that the account will be activated, Bob will be a new bank
customer.

Years later, become a project manager, Bob decides to buy a
little house. He has to obtain a loan, and the bank director
informs him that for calling a loan, his wage packet is needed.
Bob calls to the management of the software house for his wage
packet, and bring it to Bill. After some days (and other templates
filled), the bank gives the loan to Bob, who can finally buy his
new house.

Each organization offers some roles, which have to be played by
some agents, called, for this reason, players. In the bank, Bob

plays the customer role, while George plays the employee one,
and Bill the director one. Since Bob interacts with both the
organizations, he has to play a role also inside the software
house: he enters as a programmer, but after some years he
changes it, becoming a project manager. As a bank customer,
Bob has some powers: to call for an account, to transfer money
on it, to request for a loan. George, being a simple employee, has
the power to create Bob’s account, but the account activation has
to be done by Bill, the director. The call for activation is done by
mean of a specific George’s call to Bill, for the execution of a
responsibility. Also in the case of the loan request, the director
has to manage the situation, maybe examining Bob’s account,
and calling him for his wage packet. Another Bob’s power is to
call for his wage packet into the software house. Speaking about
personal capabilities, we can imagine that Bill, in order to access
to the bank procedures for which he is enabled, must fill a login
page with his ID and password; the same happens for George too,
and for Bob, in the moment in which he access to his account
using Internet. Bob, however, has also another capability, that is
requested when he plays the programmer role (but the same
happens for the project manager one): to give his login name and
password for entering the enterprise IT system. Finally, the
director is required to have more complex capabilities, like
evaluating the solvency of a client requesting a loan.

4. powerJade
The main idea of our work is to offer to agents programmers

a complete middle tier with the primitives for implementing
organizations, roles, and players in Jade (see Figure 1).

We called this middleware powerJade, remembering the
importance of powers in the interaction between roles and
organizations. The powerJade conceptual model is inspired to
open systems: participants can enter in and leave from the system
whenever they want. For granting this condition, and for
managing the (possible) continuous operations for enacting,
activating, deactivating, and deacting roles (in an asynchronous
and dynamic way), many protocols have been realized. Another
starting point has been the re-use of the software structure
already implemented in powerJava [5], based on an intensive use
of so-called inner classes.

Figure 1 - The Jade architecture and the powerJade middle
tier.

In order to give an implementation based on the conceptual
model we discussed in Section 2.3, not only the three subclasses
of the Jade Agent class (Organization, Role, and

Player) have been realized (they will be described in Sections
4.1, 4.2, 4.3), but also classes for other central concepts, like
Power, and Requirement were implemented (and showed in
Sections 4.2, 4.3). For representing the dynamics of the roles, we
implemented also all the needed communication protocols, that
will be described in Section 4.4. Organization, Role, and
Player have similar structures: they contain a finite state
machine behaviour instance which manages the interaction at the
level of the new middle tier by means of suitable protocols for
communication. To implement each protocol in Jade two further
FSMBehaviour are necessary, each one dealing the part of the
protocol of the two interactants; for example, the enactment
protocol between the organization and the player requires two
FSMBehaviours, one in the organization and one in the player.

4.1 The Organization Class
The Organization class is structured as in Figure 2.

The OrgManagerBehaviour is a finite state machine
behaviour created inside the setup() method of
Organization. It operates in parallel with other behaviours
created by the programmer of the organization, and allows the
organization to interact via the middle tier. Its task is to manage
the enact and deact requests done by the players. At each
iteration, the OrgManagerBehaviour looks for any message
having the ORGANIZATION_PROTOCOL and the performative
ACLMessage.Request. EnactProtocolOrganization and
DeactProtocolOrganization are the counterpart of the
respective protocols inside the players which realize the
interaction between organizations and players: instances of these
two classes are created by the OrgManagerBehaviour when
needed.

When the OrgManagerBehaviour recognize a message
to manage, it extracts the sender’s AID, and the type of request
required. In case of an Enact request (and whether all the
controls described on Subsection 4.4 about the Enact protocol
succeeded), a new instance of
EnactProtocolOrganization behaviour is created, and
added to the queue of behaviours to be executed. The same
happens (with a new instance of the
DeactProtocolOrganization behaviour) if a Deact
request has been done, while if the controls related to the
requested protocol will not succeed, the iteration terminate, and
the OrgManagerBehaviour takes again its cycle. In the
behavioural part of this class, programmers can add a
“normative” control on the players’ good intentions, and
managing the possibility of discovering lies before enacting the
role, or immediately after having enact it (and before w.r.t. its
activation). Primitives implementing these controls are ongoing
work.

4.2 The Role Class
As described in [3], the Role class is an Agent subclass,

but also an Organization inner class. Using this solution,
each role can access to the internal state of the organization, and
to the internal state of other roles too. Like the Organization
class has the OrgManagerBehaviour, the Role has the
RoleManagerBehaviour, a finite state machine behaviour
created inside the setup() method of Role. Its task is to

manage the commands (messages) coming from the player: a
power invocation, an Activate, or a Deactivate. Inside the role, an
instance of the PowerManager class is present. The
PowerManager is a FSMBehaviour subclass, and it has the
whole list of the powers of the role (linked as states of the FSM).
It is composed as follows:

 a first state, the ManagerPowerState, that must
understand which power has been invoked;

 a final state, the ResultManager, that has to give
the power result to its caller;

 a self-created and linked state for each power
implemented by the role programmer.

All the transitions between states are added at run-time to
the FSM, respecting the code written by the programmer.

Figure 2 - The Organization diagram.

The Powers Powers are a fundamental part of our middleware.
They can be invoked by a player on the active role in the
particular moment of the invocation, and they represent the
possibility of action for that role inside the organization. For
coherence with the Jade framework and to exploit the scheduling
facility, powers are implemented as behaviours, getting also
advantage of their more declarative character with respect to
methods. Sometimes, a power execution needs some
requirements to be completed; this is a sort of remote method
call dealt by our middleware, since requirements are player’s
actions. In our example, George, as bank employee, has the
power of creating a bank account for a customer; to exercise this
power, George as player has to input his credentials: the login
and the password. The problem to be solved is that players’
requirement invocation must be transparent to the role
programmer, who should be relieved from dealing the message
exchange with the player.

We modeled the class Power as a FSMBehaviour
subclass, where the complete finite state machine is
automatically constructed from a declarative specification
containing the component behaviours to be executed by the role
and the name of the requirements to be executed by the player; in
this way, we can manage the request for any requirement as a
particular state of the FSM. When a requirement is required, a
RequestRequirementState (that is another subclass of

FSMBehaviour) is added automatically in the correct point
invoking the required requirement by means of a protocol: the
programmer has only to specify the requirement name. The
complexity of this kind of interaction is shown in Figure 3. The
great balloon indicating one of the powers for that particular role
contains the final state machine obtained writing the following
code:

addState(new myState1("S1", "R1",
"E1"));

addState(new myState2("S2"));

where S1 and S2 are names of possibly complex behaviours
implemented by the role programmer which will be instanced
and added to the finite state machine representing the power, R1
is the name requested requirement, and E1 is a behaviour
representing the error management state. Analyzing the structure
of the power, we can see that the execution of the first state S1 is
followed by a macro-state (that is a FSMBehaviour),
managing the request for a requirement, automatically created by
the addState() method. This state will send to the player the
request for the needed requirement, also managing the possible
parameters, waiting for the answer. Whether the answer is
positive, the transition to the following state of the power is done
(or to the ResultManager, if needed); otherwise, the error
can be managed (if possible), or the power is aborted. The
ErrorManager is a particular state that allows to manage all
the possible kinds of error, also the case in which a player lied
about its requirements).

Error management is done via the middle tier. We can
individualize two kinds of possible errors: (i) the accidental
ones, and (ii) the voluntary ones. Typical cases of the (i) are the
“practical” problems (i.e. network too busy and timeout expired),
or the ones linked to a player bad working (also, a programming
problem); those indicated as (ii) are closely linked to an incorrect
behaviour of the player, like the case in which an agent lied on
its requirements during an enact protocol. The latter case of error
managing allows to the organization and roles programmer a fist,
rough, implicit, normative and sanctionative mechanism: if the
player, for any reason, shows a lack of requirements, it could be
obliged to the deact protocol w.r.t. that particular role, or it can
be “marked” with a negative score, that could mean a lower trust
level exercised from the organization to it. An advantage given
by using a declarative mechanism like behaviours for modelling
powers is that new powers can be dynamically added or removed
from the role. It is sufficient to add or remove transactions
linking the power to the ManagerPowerState which is a
FSMBehaviour too. This mechanism can be used to model both
dynamics of roles in organizational change or access restrictions.
In the former case we can model situations like the power of the
director to add to the employee the power of giving loans. In the
latter case, we can model security restriction by removing powers
from roles, so to avoid the situation where first a power is
invoked and then aborted after controlling an access control list.

Figure 3 - Power management.

4.3 The Player Class
Analogously to Organization and Role, also the

Player class is an Agent subclass. Like in the other two
cases, we have a PlayerManagerBehaviour, a
FSMBehaviour managing all the possible messages that the
player can receive.

The player is the only agent totally autonomous. It contains
other behaviours created by the agent programmer which are
scheduled in parallel with the manager behaviour and it can

obviously also interact with other agents, not involved in any
organization (since the communication protocol existing in Jade
always continues working), but it’s constrained to interact with
any kind of organization using a role offered by the organization
itself. In case of a communication with another agent inside the
organization, it can be done only via roles. Any other activity,
communication, or action that both the agents could do without
passing through their roles will not have effect on the internal
state of the organization at all. Only the player can use all the
four protocols described in Subsection 2.2: Enact and Deact with
the organization, Activate and Deactivate with the role. While
the role has to manage powers, the player deals with
requirements: this is done by a RequirementManager.

The Player class offers some methods. They can be used
in programming the other behaviours of the agent when it is
necessary to make change to the state of role playing or to invoke
powers. We assume invocations of powers to be asynchronous
via the invokePower method from any behaviour
implemented by the programmer. The call informs the
PlayerManagerBehaviour which starts the interaction
with the role and returns a call id which is used to receive the
correct return value in the same behaviour if necessary. It is left
to the programmer how to manage the necessity of blocking of
the behaviour till an answer is returned, with the usual block
instruction of JADE. This solution is coherent with the standard
message exchange of JADE and allows to avoid using more
sophisticated behaviours based on threads. The behaviour can
then consult the PlayerManagerBehaviour to get the
return value of the power if it is available. The player, once
having invoked a power, stays waiting, i.e., for messages o

Figure 4 - The Sequence Diagram for a complex communication.

requests from the active role. When the role needs for some
requirements, the PlayerManagerBehaviour passes the
control to the RequirementManager, which execute all the
tasks which are needed. It’s important to notice that a player can
always grow w.r.t. its capabilities/requirements. A player can
know organizations and roles on the platform by using the Yellow
Pages mechanism, that in a basic JADE feature.

The Requirements Requirements are, for a player, a subset of
the behaviours representing its capabilities, and, in some sense,
the plans for achieve the personal goals of the agent. Playing a
role, an agent can achieve more goals (i.e., the goals achievable
invoking a power), but, in a general case, the execution of one or
more requirements can be needed during the invocation of a
power. Referring to our bank example, George can achieve many
goals dealing with its employee role (i.e., create a new account),
but to do it, it’s necessary for him to log in inside the bank IT
system. Seen as a requirement, its log in capability denote his
“attitude”, his “possibility” of playing his employee role. During
the enact protocol, the organization sends (see Section 4.4) to the
agent wanting to play one of its roles, the list of requirements to
be fulfilled. As we said, the candidate player could lie, entering
in the role in a not honest way. The organization and role
programmer, however, has all the possibility to check the truth of
the candidate player’s answer before it begins to play the role,
not enacting it, or deacting immediately after the enact. Also this
kind of choice has been done to grant the highest freedom
degree.

4.4 Communication Protocols
In this Section, an example of a complex communication

between a player, an organization, and a role is shown. We have
to make some preliminary considerations, about communication.
Each protocol is split in two, specular, but complementary
behaviours, one for each actor. In fact, if we consider a
communication, two “roles” can be seen: an initiator, which is
the object sending the first message, and a responder, which
never can begin a communication. For example, when a player
wants to play a role inside an organization, an
EnactProtocolPlayer instance is created. The player is
the initiator, and a request for a role is done from its new
behaviour to the OrgManagerBehaviour, which instantiates
an EnactProtocolOrganization behaviour. This
behaviour will manage the request, sending to the
EnactProtocolPlayer an Inform containing the list of the
requirement needed to play the requested role. The
EnactProtocolPlayer evaluates the list, answering to the
organization part whether it agrees (notice that the player
programmer could implement a behaviour that always answers in
a positive way, that sounds like a lie). Only after receiving the
agreement, the EnactProtocolOrganization creates a
RoleManager instance, and sends the AID of the role just
created to the player. The protocol ends with the update by the
player of its internal state. Since the instance of a role, once
created, is not yet activated, when the player wants to “use” a
role, has to activate it. Only one role at a time is active, while the
others, for which the agent finished successfully the enactment
protocol, are deactivated. The activation protocol moves from the
player to the role instance. The player creates an
ActivateProtocolPlayer, which sends a message to the

role, calling for the activation. This message produces a change
into the internal state of the role, which answers with an inform
telling its agreement. Once the role has been activated, the player
can proceed with a power invocation. As we discussed in [3], this
is not the only way in which player and role instance can
communicate. We consider it, since it can require a complex
interaction, beginning from the invoke done by the player on a
power of the role. As we shown in Subsection 4.2, the power
management can involve the request to the player for the
execution of one or more requirements. In this case, the role
sends a request with the list of requirements to be fulfilled. The
player, since autonomous, can evaluate the opportunity to
execute the requirement(s), and take the result(s) to the role
(using an inform, waiting for the execution of the power and
for receiving the inform with the result. A particular case, not
visible in Figure 4, is the one in which the player, for any reason,
does not execute the required requirements. This “bad”
interaction will finish with an automatic deactment of the role.

5. The CNP scenario in powerJade
In Section 3, we discussed the bank example, trying to focus

on roles’ powers, players’ requirements, responsibility calls, and
all that has a place in our middleware. In this Section, we want
to show a more technical example: the CNP one, or manager-
bidder problem. In Figure 5, a little part of the interaction
between the player for the manager role and its role is shown.
Let’s consider an agent doing one of its behaviours. In a
particular moment, a task has to be executed, but the agent
knows that it cannot execute it, since this job is not achievable
with its capabilities. The only solution is to find someone able to
execute the task, possibly paying the least is possible. The agent
has no knowledge about the ContractNet Protocol, but it knows
that there is an organization that offers the CNP by mean of its
roles. The (candidate) player contacts the organization, starting
the enact protocol for the role of manager in the CNP M_CNP.
The organization sends the list of requirements to be fullfilled,
composed by the “task” requirement (that is the ability to send a
task for a call for proposal operation), and the “evaluate” task
(that is the ability to evaluate the various bidders’ proposals,
choosing the best one). The candidate player owns the
requirements, so the role is created. When the player come to
execute once again the behaviour containing the not executable
task, an invokePower() is executed, calling for the power
with name CNP (the bold arc with number 1 in Figure 5). The
role begins the power execution (managed by the
PowerManager, after the RoleManager has passed to it the
control). The first state for the power is the request for a
requirement: for starting a call for proposal, the task to be
delegated must be specified by the player. The
RequestRequirementState sends a request for
requirement to the PlayerManager (the bold arc with number
2 in Figure 5), that passes the control to the
RequirementManager.

The correct requirement is executed (the state which entering arc
is labeled “task”), and the result is sent back to the
RequestRequirementState (the bold arc with number 3).

Figure 5 - Part of the solution for the CNP example. We can
notice three interactions between different actors: (1) is from
a player’s behaviour to the active role; (2) is from a role’s
power to the player; (3) is from a the player to the role,
communicating the requirement result; (4) is from a role’s
power to another role.

The power execution goes on, arriving to the SEND_CFP state,
that provides the call for proposal to any bidder known inside the
organization (bold arc with label 4, we assume that some agents
already enacted the bidder role), going directly to add the
opportune behaviour to the PowerManager of the B_CNP
instances found. The bidder roles will send messages back to the
manager roles, after requesting to their players the requirement
to specify or not a price for the task to be delegated. The
complicated interaction between players and their roles, and
between role and role, is executed without that players have to
know the CNP dynamics, since all the complexity has been
introduced in the roles. For the player playing the manager role,
and for the ones playing the bidder role, the organization is a
kind of black box; roles are the “wizards” managing the
communication logics, and opportunely calling operations to be
done by the players (that are absolutely autonomous: they are the
only agents able to take decisions.

6. Related work and conclusions
On organizations and roles representations, many models

have been proposed [12], applications modeling organizations or
institutions [19], software engineering methods using
organizational concepts like roles [25]. Several agent
programming languages (among which 3APL [24]) have been
developed, but few of them have been endowed with primitives
for modeling organizations and roles as first class entities.
Exceptions can be found in MetateM [11] (which is BDI
oriented, is based on the notion of group, and it is not a general
purpose language), J-MOISE+ [15] (which is more oriented to
programming how agents play roles in organizations), and the
Normative Multi-Agent Programming Language in [22] (which is
more oriented to model the institutional structure composed by
obligations, more than the organizational structure composed by
roles). Considering frameworks for modelling organizations like

SMoise+ [16] and MadKit [13], can be noticed limited
possibilities to program organizations.

Regarding the analysis of organizations, in [23] can be
found what is called the perspective of computational
organization theory and artificial intelligence, in which
organizations are basically described at the role, and group,
composed of roles, levels. Under this perspective,works such as
GAIA [25] (which is a model for designing MAS, more than a
framework) and the already cited (with extensions) MOISE [14]
can be found, while other models, such as ISLANDER [10],
define organizations as electronic institutions, in terms of norms
and rules. With respect to organizational structures, HolonicMAS
[21] present particular pyramidal organizations in which agents
of a layer (under the same coordinator, also known as the holon’s
head) are able to communicate and to negotiate directly between
them [1]. Roles and groups can express quite naturally Holonic
structures, under the previously described perspective.

Looking at agent platforms, there are two other—other than
JADE—which can be considered relevant in this context. First,
JACK Intelligent Agents [2] supports organizational structures
through its Team Mode, where goals can be delegated to team
member in order to achieve the team goals. JADEX [20] presents
another interesting platform for the implementation of
organizations, even if it does not currently have organizational
structures. [18] make a very similar proposal to powerJade.
However, it does not propose a middle tier supported by a set of
managers and behaviours making all the communication
transparent to agent programmers. It presents a simpler approach
that relies mostly on the extension of agents through behaviours
and represents Roles as components on an ontology, while our
approach presents a slightly more complex approach, in which
roles are implemented as agents that provide further decoupling
by brokering between organizations and players, and provides a
state machine that permits precise monitoring of the state of the
roles. In this paper we introduce organizations and roles as new
classes in the Jade framework which are supported by a middle
tier offering to agents the possibility to enact roles, invoke
powers and to coordinate inside an organization. The framework
is based on a set of FSMBehaviours which realize the middle tier
by means of managers keeping track of the state of interaction
and protocols to make the various entities communicate with
each other. Powers offered by roles to players have a declarative
nature that does not only make them easier to be programmed,
but allows the organization to dynamically add and remove
powers so to have a restructuring of the roles. The normative part
of our work has to be improved, since, at the moment, only a
kind of “implicit” one is present. It can be seen, for example, in
the constraints which make possible to play a role only if some
requirements are respected. We are also considering possible
merge with Jess (in order to use an engine for goals processing),
and Jason.

7. REFERENCES
[1] E. Adam and R. Mandiau. Roles and hierarchy in multi-

agent organizations. In CEEMAS, pages 539–542, 2005.

[2] AOS. JACK Intelligent Agents, The Agent Oriented
Software Group (AOS), http://www.agent-
software.com/shared/home/, 2006.

[3] M. Baldoni, G. Boella, V. Genovese, R. Grenna, and L. van
der Torre. How to Program Organizations and Roles in the
JADE Framework. In MATES, pages 25–36, 2008.

[4] M. Baldoni, G. Boella, and L. van der Torre. Modelling the
interaction between objects: Roles as affordances. In
Knowledge Science, Engineering and Management, First
International Conference, KSEM 2006, volume 4092 of
LNCS, pages 42–54. Springer, 2006.

[5] M. Baldoni, G. Boella, and L. van der Torre. Interaction
between Objects in powerJava. Journal of Object
Technology, 6(2):7–12, 2007.

[6] G. Boella, V. Genovese, R. Grenna, and L. der Torre. Roles
in coordination and in agent deliberation: A merger of
concepts. PRIMA 2007, 2007.

[7] G. Boella and L. van der Torre. Organizations as socially
constructed agents in the agent oriented paradigm. In
Engineering Societies in the Agents World V, 5th
International Workshop (ESAW’04), volume 3451 of LNAI,
pages 1–13, Berlin, 2005. Springer.

[8] A. Colman and J. Han. Roles, players and adaptable
organizations. Applied Ontology, 2007.

[9] M. Dastani, B. van Riemsdijk, J. Hulstijn, F. Dignum, and
J.-J. Meyer. Enacting and deacting roles in agent
programming. In Procs. of AOSE’04, pages 189–204, New
York, 2004.

[10] M. Esteva, D. de la Cruz, and C. Sierra. ISLANDER: an
electronic institutions editor. In AAMAS, pages 1045–1052,
New York, NY, USA, 2002. ACM.

[11] M. Fisher, C. Ghidini, and B. Hirsch. Organising
computation through dynamic grouping. In Objects, Agents,
and Features, pages 117–136, 2003.

[12] D. Grossi, F. Dignum, M. Dastani, and L. Royakkers.
Foundations of organizational structures in multiagent
systems. In Procs. of AAMAS’05, pages 690–697, 2005.

[13] O. Gutknecht and J. Ferber. The madkit agent platform
architecture. In Agents Workshop on Infrastructure for
Multi-Agent Systems, pages 48–55, 2000.

[14] M. Hannoun, O. Boissier, J. S. Sichman, and C. Sayettat.
Moise: An organizational model for multi-agent systems. In
IBERAMIA-SBIA, pages 156–165, 2000.

[15] J. F. Huebner. J-Moise+ programming organizational agents
with Moise+ and Jason. In

http://moise.sourceforge.net/doc/tfg-eumas07-slides.pdf,
2007.

[16] J. F. Huebner, J. S. Sichman, and O. Boissier. S-moise+: A
middleware for developing organised multi-agent systems.
In O. Boissier, J. A. Padget, V. Dignum, G. Lindemann, E.
T. Matson, S. Ossowski, J. S. Sichman, and J. Vzquez-
Salceda, editors, AAMAS Workshops, volume 3913 of
Lecture Notes in Computer Science, pages 64–78. Springer,
2005.

[17] A. Jones and M. Sergot. A formal characterisation of
institutionalised power. Journal of IGPL, 3:427–443, 1996.

[18] C. Madrigal-Mora, E. Le´on-Soto, and K. Fischer.
Implementing Organisations in JADE. In MATES, pages
135–146, 2008.

[19] A. Omicini, A. Ricci, and M. Viroli. An algebraic approach
for modelling organisation, roles and contexts in MAS.
Applicable Algebra in Engineering, Communication and
Computing, 16(2-3):151–178, 2005.

[20] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex:
Implementing a bdi-infrastructure for jade agents. EXP,
3(3):76–85, 9 2003.

[21] M. Schillo and K. Fischer. A taxonomy of autonomy in
multiagent organisation. In Agents and Computational
Autonomy, pages 68–82, 2003.

[22] N. Tinnemeier, M. Dastani, and J.-J. C. Meyer. Orwell’s
nightmare for agents? programming multi-agent
organisations. In Sixth international Workshop on
Programming Multi-Agent Systems PROMAS’08, 2008.

[23] E. L. van den Broek, C. M. Jonker, A. Sharpanskykh, J.
Treur, and P. Yolum. Formal modeling and analysis of
organizations. In AAMAS Workshops, pages 18–34, 2005.

[24] W. van der Hoek, K. Hindriks, F. de Boer, and J.-J. C.
Meyer. Agent programming in 3APL. Autonomous Agents
and Multi-Agent Systems, 2(4):357–401, 1999.

[25] F. Zambonelli, N. Jennings, and M. Wooldridge.
Developing multiagent systems: The Gaia methodology.
IEEE Transactions of Software Engineering and
Methodology, 12(3):317–370, 2003.

